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Abstract—The human face is a vital component of our
identity and many people undergo medical aesthetics proce-
dures in order to achieve an ideal or desired look. However,
communication between physician and patient is fundamen-
tal to understand the patient’s wishes and to achieve the
desired results. To date, most plastic surgeons rely on either
‘‘free hand’’ 2D drawings on picture printouts or computer-
ized picture morphing. Alternatively, hardware dependent
solutions allow facial shapes to be created and planned in
3D, but they are usually expensive or complex to handle. To
offer a simple and hardware independent solution, we
propose a web-based application that uses 3 standard 2D
pictures to create a 3D representation of the patient’s face on
which facial aesthetic procedures such as filling, skin clearing
or rejuvenation, and rhinoplasty are planned in 3D. The
proposed application couples a set of well-established meth-
ods together in a novel manner to optimize 3D reconstruc-
tions for clinical use. Face reconstructions performed with
the application were evaluated by two plastic surgeons and
also compared to ground truth data. Results showed the
application can provide accurate 3D face representations to
be used in clinics (within an average of 2 mm error) in less
than 5 min.

Keywords—Statiscal, Shape, Modelling, Plastic surgery,

Comminication tool.

INTRODUCTION

Along with its functional aspects, the human face is
a vital component of our identity and it provides us
with many intricate and complex communication
channels to society. Many people with desire for
change, suffering from low self-esteem, or seeking for

an ideal look according to society, undergo medical
aesthetics procedures.6 However, communication
between physician and patient is fundamental in order
to understand the very often subjective wishes of the
patient.

Most plastic surgeons rely on either ‘‘free hand’’
two-dimensional (2D) drawings on picture printouts or
computerized picture morphing19,20 in order to estab-
lish the goals of facial aesthetic procedures, i.e., to
discuss the feasible procedures according to the wishes
of the patient. However, 2D visualization is limited to
one point of view and therefore hinders the overview of
the procedure outcome. Three-dimensional (3D)
models associated with 3D planning tools can over-
come such limitations, but the acquisition of these
representations of the patient face is not trivial.
Computed Tomography (CT)-scans allow creation of
3D facial shapes,14,15 but their radiation exposure and
costs are not acceptable for aesthetic procedures. Other
hardware dependent solutions such as laser or stereo-
photogrammetric scanners12,16,22 also offer the possi-
bility of creating 3D facial shapes, but such devices are
usually expensive or complex to handle. As a result,
their use is limited to physicians having the necessary
financial or technical resources. Alternatively, other
hardware independent methods for creating 3D faces
from pictures and video have been proposed including
shape from shading,24 structure from motion,13,23

shape from silhouette,18,21 and statistical facial mod-
els.3 While the former three are dependent on the
condition of light available, continuous multiple
frames acquisitions (e.g., video), or high number of
frames respectively, the latter has showed very robust
results on reconstructing 3D faces by morphing a sta-
tistical facial model to a subject specific face. The use
of these methods has been mainly limited to a research
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environment and therefore they are not optimized for
clinics. Limitations on speed, accuracy and lack of
planning capabilities hinder the direct use of these
techniques as a physician-patient communication tool.

In order to overcome these drawbacks, we propose
in this paper a web-based and hardware independent
application which creates a 3D representation of the
patient’s face from 2D-digital pictures and enables
planning of aesthetic procedures in 3D. The proposed
application requires three standard 2D-pictures of the
patient (one frontal and two profiles) and a few land-
marks in each image as input. The web-based software
computes a patient-specific virtual 3D face on which
physicians can directly show the intended procedural
changes to the patient with the 3D planning tools in
different points of view. Clinical usability was the main
focus of this application, therefore the methods for
facial feature detection, 3D reconstruction and texture
mapping were carefully chosen in the literature and
optimized to enable their use within standard consul-
tation time. Emphasis was given to the link between
the different steps of the pipeline in order to allow for a
time-effective application with sufficient accuracy for
clinical use. Therefore, methods for facial feature
contour detection based on training from synthetic
data and the semi-supervised feature contour correc-
tion are proposed. To evaluate this application, a set of
face reconstructions was performed and compared to
different ground truth data. Variables include 3D
reconstruction time, distance to the ground truth, as
well as qualitative evaluation performed by two plastic
surgeons (for reconstructions and planning tools).

MATERIALS AND METHODS

Application

Similarly to a previously developed application for
3D visualization of breast augmentation procedures,7

this application is accessible entirely on the internet.
Therefore, it requires no additional hardware apart
from a standard digital camera. The application runs
on a normal web browser, which allows physicians,
dermatologists, and aesthetic professionals from all
over the world to plan aesthetic facial procedure in 3D
following a simple workflow without dealing with
technical challenges (see Fig. 1). First, the user mea-
sures the approximate distance between the eyes of the
patient with a normal ruler and takes three pictures
(one frontal, one from left profile and one from the
right profile). The measurement and images are up-
loaded to the application running on a standard web
browser. Subsequently, the physician manually places
a set of landmarks in the images (28 in total, see image

and landmarks from Fig. 1) and uploads them to the
web server. These landmarks representing key facial
features (pupils, mouth corner, etc.) increase the
robustness of the automatic detection of further points
(around 120 per image) representing contours of facial
features (eyes, mouth, face, etc.) and necessary for the
3D reconstruction. With the detected contour points,
the physician has the opportunity to check and correct
them if necessary. Splines facilitate interaction with the
contours (see feature contours correction in Fig. 1).
Once the correction is finished, the splines are con-
verted back to facial contours points that are sent to
the web server to reconstruct a 3D textured shape of
the patient face based on a 3D statistical shape model.
Finally, the 3D representation of the patient face is
displayed on the web browser powered with Unity 3
(from Unity Technologies, San Francisco, United
States), and the physician may discuss the intended
aesthetical procedures with the patients using the
included and available planning tools. The set of tools
allow manipulation of the patient specific virtual face
in 3D considering different aesthetic procedures such
as rhinoplasty, skin fillers, and dermabrasion proce-
dures. The following sections explains the different
steps of the pipeline.

Input Data Acquisition

The instructions for acquiring the input data are
simple and easy to be replicated in every clinic. Colored
images should be taken in the portrait orientation with
the face occupying most of the image (around 60%).
Faces on the order of 500 pixels width have been found
to be a good compromise between reconstruction and
image quality. The patient should have a neutral
expression, with opened eyes and without accessories
(e.g., ear rings or glasses). In case of long hair, a hair
band can be used to avoid hair on the facial region. The
frontal image should be acquired with the patient fac-
ing the camera and with the nose in the center of the
image. The profile images should be acquired with the
patient ear and shoulder facing the camera and with the
cheek in the center of the image. The camera to patient
distance should be approximately 2 m. Such distance
was found to be a good compromise between distor-
tions caused by perspective projection and optical
zoom power of standard digital cameras. The eye dis-
tance can be measured by placing a ruler on the nose of
the patient and checking the values laying on the center
of the eye. This distance is later used to rescale the final
reconstructed shape and perform virtual measure-
ments. Additionally, the physician must place 6 land-
marks on the frontal image and 11 in each profile image
with the instructions presented by an interactive tool
that highlights the proper location of the currently
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selected landmark on a sketch of a face. See Fig. 1 for
location of the landmarks.

Statistical Shape Models

Statistical shape modeling is a technique used to
represent the shape of objects that possess prior gen-
eral geometric information, but that may vary among a
population. For example, the shape of human faces is
different for every person, but follow a general pattern
defining the overall location of eyes, nose, and mouth.
This method has been explored for 2D and 3D shapes,
and its main applications include object detection
in images and regression for estimating object
shapes.3,5,17 The first is typically known as active shape
model (ASM), while the second as shape or surface
reconstruction. We explore statistical shape models in
two different ways (2D and 3D), to detect contour
points of facial features in the images and to recon-
struct the final representation of the patient’s face
respectively. The 3D statistical shape model used here
was created using 200 faces of young adults (100 male
and 100 females).3 In order to create a statistical model
out of shapes represented by vertices, a one-to-one

correspondence between each vertex of the shapes had
to be established (for further details on establishment
of vertex correspondence the reader is referred to Blanz
and Vetter3 and Cootes et al.5). Assuming vertex cor-
respondence and a common coordinate system, sta-
tistics about variation among the shapes can be
collected and used to reconstruct new shape instances.
The model used in this work comprises a mean shape
mesh and a mean texture along with two matrices of
eigenvectors and their respective eigenvalues (for fur-
ther details on statistical shape generation the reader is
referred to Blanz and Vetter3).

2D Feature Contour Points Detection

In this work, a 2D ASM is used to identify a set of
points representing feature contours in the images.17

The search for the best contour point is performed
according to the smallest Mahalanobis distance
between a profile surrounding the current vertex
position and the base profile of the corresponding
vertex. The base profile is generated out of a training
set. The update of the new shape instance is performed
by applying a set of weights. The weights are estimated

FIGURE 1. Overview of the data flow in the different steps of the application that is divided in two layers separated by the internet
cloud: the web browser powered with ‘‘unity 3’’ at the physician’s computer and server computer providing the web service. The
image & landmarks box highlights the landmarks to be manually defined (yellow crosses): 6 frontal (right eyebrow, eye centers,
nose tip, left mouth corner, and chin) and 11 in each profile image (top of the forehead, inflection of the nose with forehead, end of
the eyebrow, eye corner, tip of the nose, corner of the mouth, connection of the chin with the neck, back part of the jaw, bottom and
top of the ear, and neck inflection). The feature contours correction box highlights the splines for correction of the feature contour
points. The 3D Planning box highlights the final 3D shape for planning.
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from the difference of the current shape points and
their new best positions, as proposed by Cootes et al.5

Convergence is achieved when there are no more
changes between the new points and the new estimated
shape.

One of the key challenges with ASM is the gathering
of data to create and train the statistical shape model.
Several databases with annotated facial images are
available, but the number and position of annotated
points are typically fixed and not suitable for the 3D
reconstruction method used here. In order to obtain
accurate 3D reconstructions, the approach presented
here demands a ASM generated out of a database of
images with frontal and profile images annotated with
several facial feature points (e.g., eyes contours, mouth
contours, silhouette contour, etc.). Since such a flexible
database is not publicly available, we used the 3D sta-
tistical shape model to generate artificial data to train
our 2D ASM. The artificial data not only eliminates the
variability of the annotation process, but also allow for
flexible optimization of the set of points used for 3D
reconstruction since new images and annotations can be
easily re-generated. A set of 6000 shapes were artificially
generated by randomly varying shape and texture
weights of the 3D statistical shapemodel. The 3D shapes
were subsequently projected from two different points
of view: frontal, to simulate the frontal image; and
profile, to simulate the lateral view. The backgrounds of
these artificial images were replaced by one of 12 ran-
domly selected images of different uniform walls in or-
der to simulate a real scenario. In addition, a subset of
vertices representing manually chosen feature contours
of the 3Dmean shape were defined. The selected vertices
were carefully chosen to match their respective facial
feature locations in the images. Finally, the projected 3D
vertices representing feature contour points and images
were used to train two 2D ASM, one for frontal images
and one for the right profile images.

With the trained 2D ASMs, the search of the 2D
feature contour points in a new image can be per-
formed. Firstly, the mean shape comprising the points
representing the feature contour points and comprising
the points representing the manually annotated land-
marks is aligned to the face according to the landmarks
defined on the images by the physician. Finally, the
algorithm iteratively searches for the optimal 2D shape.
To ensure a stable search, the manually annotated
landmarks are considered as ground truth. Therefore,
points in the 2D shape representing a initial landmark
are set to their respective manually annotated location
at each iteration. The left profile image feature contour
points are found by mirroring the left image along the
vertical axis, applying the ASM for the right profile,
and mirroring the contour points back. (See Appendix
for additional feature search information.)

2D to 3D Face Reconstruction

One of the challenges with dense 3D shape recon-
struction is the computational time required to esti-
mate the set of weights that best represent the desired
face. For this reason iterative approaches,3,5 such as
the one used in the previous section, do not provide a
clinical acceptable processing time. To overcome such
time constraints, Blanz et al.2 have proposed a method
for reconstructing dense 3D shapes from sparse data.
The method presents a time efficient closed form
solution for reconstructing 3D faces out of a set of
points defined on a 2D image, but is limited to one
image. To cope with the time requirements of the
dynamical clinical environment while also increasing
the information for reconstruction, we adopt a similar
approach based on multiple views, presented by Fag-
gian et al.8 The multiple views reconstruction method
allows for fast reconstruction of a 3D face out of a set
of points representing facial features defined in images
acquired from different points of views. Basically, an
energy function averaging the contribution of points in
each image and the prior knowledge of the shape of a
face helps to find an optimal set of weights for the
reconstruction in one step. (See Appendix for addi-
tional information on the energy function.) The set of
weights is finally used to obtain the desired shape of
the patient’s face.

Texture Mapping

Original statistical shape model approaches3 esti-
mate the texture of the shape from a statistical texture
model. However, faster and more realistic shape tex-
ture can be achieved by mapping real images of
patients. With one frontal and two profile images, a
good corresponding texture value can be found for
each vertex of the shape representing the patient’s face.
Therefore, shape texture was mapped from the images
acquired during the consultation.

Firstly, a surface parameterization algorithm
(Floater Mean Value Coordinates9) was applied to the
mean shape to define a offline transformation estab-
lishing correspondence between the shape vertices and
the texture image. Such transformation is used after-
wards to generate two intermediate texture images for
each patient, one derived from the frontal image and
one derived from the profile images. Finally, the two
textures are blended in one texture image using a
multiband filter.4 (See Appendix for the formulation of
the texture mapping.)

3D Visualization and Planning Tools

The 3D visualization and planning is very important
to the physician because it is where he (she) will

OLIVEIRA-SANTOS et al.

Author's personal copy



continuously interact with the system to discuss with the
patient. Therefore, a clear and responsive tool is essen-
tial to maintain clinical usability. In order to cope with
these requirements with a web based application, the
visualization and planning tools are implemented with
Unity 3 (a environment for high-end 3D web-based
game development). As a plug-in, Unity 3 enables 3D
rendering such as lightning, and mesh manipulation on
standardwebbrowserswith performance comparable to
state-of-the-art platform applications.

Four main planning tools were developed: one for
rhinoplasty, one for skin fillers, one for dermabrasion
(skin cleaning) and one for comparing before and after
planning. The tool for rhinoplasty allows the nose to
be manipulated using pre-defined points that are typ-
ically changed during plastic interventions. The pre-
defined points are used as control points for local
interpolation of the 3D mesh and deformation of the
nose. The tool for skin filling allows regions on the skin
to be delineated and filled with a certain volume that is
evenly distributed along the selected region. The
injected volume is not intended to represent the volume
to be injected in reality because of difficulties related to
absorption and other factors, but rather to illustrate
the difference between pre- and post-procedure. The
dermabrasion tool allows wrinkles and undesired
marks to be removed, as well as rejuvenation of the
skin. Basically, a 3D brush selects a circular region to
be smoothed on the skin. The region is then mapped to
the textured image where a gaussian filter is applied.
With the comparison tool, physicians and patients can
visualize the intended effect of the intervention with
pre- and post-planning situations displayed side by
side. Additional tools enable measurements of dis-
tances between two points considering straight lines or
along the surface (geodesic paths).

Experiments

In order to evaluate our application, three types of
data have been used as ground truth (see Table 1):
in-model data (IMD), out-model registered data
(OMRD) and out-model non-registered data
(OMNRD). For IMD, the initial landmarks were
automatically generated using their ground truth
location with a gaussian noise (sigma equals to 2 and
cropped at 4 pixels) and reconstruction was performed
automatically without considering the feature contour
correction step (illustrated in Fig. 1). For OMRD and
OMNRD, reconstruction was performed by an expert
for each case. The time required to perform each step
of the pipeline was measured. Finally, the recon-
structed faces were compared to the ground truth for
each case as follow. Firstly, ground truth and recon-
structed shapes were aligned considering eye, nose and

mouth segments of the 3D statistical shape model.3

Secondly, distances for all three datasets were measured
from vertices of the reconstructed face to their corre-
sponding point in the ground truth surface. For IMD
and OMRD (with one-to-one vertex correspondence
between ground truth and reconstruction), the shapes
were aligned with Procrustes.11 For OMNRD (without
vertex correspondence), the shapes were aligned with
iterative closest point (ICP).1 The vertex correspon-
dence of IMD and OMRD were not directly used for
distance measurement because the correspondence
cannot be ensured in flat areas such as cheeks and
forehead after reconstruction. Therefore, two different
methods were used to find vertex correspondence in all
three datasets14: closest point matching (CPM), which
considers the closest point in the ground truth surface
as corresponding point; and thin plate spline plus
closest point matching (TPS + CPM), which first
warps the reconstructed face with a TPS transforma-
tion and a set of landmarks, and subsequently finds the
closest point on the ground truth surface. The former is
a direct method that is not influenced by human error,
nevertheless it does not ensure correct anatomical cor-
respondence. The latter relies on the manual definition
of landmarks, but presents a better anatomical corre-
spondence. Since the distance measured from corre-
sponding points found by TPS + CPM is not
necessarily to the closest point between the two sur-
faces, but a more anatomically relevant distance, it
should result in higher values than the ones found by
CPM. A total of 15 validation landmarks were defined
in the reconstructed and in the ground truth shapes (see
Electronic Supplementary Material). In addition to the
distance measurements, a visual analysis was per-
formed by two plastic surgeons in each of the cases
from OMNRD to support the qualitative results. The
surgeons rated each of the reconstruction according to
the values presented in Table 2 while comparing to the
ground truth and to the pictures. In a last step, the 3D
planning tools were evaluated qualitatively on the
reconstructed cases.

RESULTS

The average time necessary to obtain the 3D face
once the 2D images were uploaded to the application
was 297.79 ± 90.49 s. This time has been divided
among different individual steps of the application:
manual definition of the facial landmarks (94.32 ±

36.45 s), 2D feature contour points detection (8.50 ±

3.99 s), manual correction of the feature contours
(191.52 ± 70.59 s), 3D face reconstruction (0.71 ±

0.39 s), and texture mapping (0.83 ± 0.23 s).
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The average reconstruction error over all cases
measured with CPM was below 2 mm for all datasets
type. Peaks of up to 2.1 mm per region were noticed
for the individual case errors (except for the 299th

worst case that presented 2.88 mm error for the mouth
region before manual correction of the feature con-
tours, but below 2 mm after manual correction). The
average reconstruction error over all cases measured
with TPS + CPM was below 2 mm for subjects of
IMD, OMRD, and below and 3 mm for OMNRD.
The distances calculated with CPM and TPS + CPM
vertex correspondence representing the reconstruction
error are presented in different graphs according to
dataset type, see Figs. 2 and 3, respectively. Figures 4
and 5 show respectively the good and bad examples of
reconstructions of each dataset type. The distance
maps present small errors around the eyes and chin
region. There exist larger errors in the face region
around the cheek and forehead since the current
method does not use information from those regions
for reconstruction. The neck and ears region also
showed large errors, but are not considered in the
analysis since such regions have only been used to
complete the appearance of the face. It is worth men-
tioning that the errors of the IMD cases could still be
improved since no manual corrections were performed
for the feature contours. Visual inspection of the 2D
feature contour points detection showed that auto-
matic detection of the feature contour failed consid-
erable in 9% of the IMD cases. Therefore, the
reconstruction of such cases could be significantly
improved after manual the corrections, see Fig. 6 for
two examples.

According to the visual analysis performed by 2
surgeons, all reconstructed cases from the OMNRD
could be used for communicating with the patient,
although some of them presented sub-optimal recon-
struction. Out of the 28 real cases reconstructed, 1 and
2 cases were evaluated as a ‘‘Bad’’ reconstruction by
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TABLE 2. Rating system used for the qualitative evaluation
of the reconstructed 3D faces.

Value Meaning Description

5 Excellent No apparent differences from the

patient can be noticed

4 Very Good It is very similar to the patient

apart from minor details

3 Good It is similar to the patient and good

for communication with the patient

2 Bad Large differences to the patient

can be noticed, but it can still be

used for communication of

certain procedures

1 Very Bad It has no resemblance with the

patient and cannot be used for

any kind of communication
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surgeon 1 and 2 respectively. No cases were evaluated
as ‘‘Very Bad’’ or ‘‘Excellent’’. The average evaluation
were in between ‘‘Good’’ and ‘‘Very Good’’ with val-
ues of 3.54 and 3.32 for surgeon 1 and 2 respectively.
Examples of reconstruction paired with the respective
grade attributed by the surgeons are presented in
Fig. 7. According to the surgeons, the reconstruction
of some cases gave different impressions when ana-
lyzing from different points of view (e.g., frontal and
profile). For example, case 1 from Fig. 7 (graded as
‘‘Very good’’ by surgeon 2) gives better frontal
impression than profile, while case 3 (graded as ‘‘Very

good’’ by surgeon 2) gives better profile impression.
From the reconstructions, only case 5 diverged signif-
icantly between the surgeons (‘‘Very good’’ by surgeon
1 and ‘‘Bad’’ by surgeon 2). While for surgeon 1 the
overall appearance of the face was very well captured,
for surgeon 2 it did not replicate the nose very well
from profile and it did not capture the face appearance
from frontal view. Another example of a ‘‘Bad’’
reconstruction for surgeon 2 can be seen in case 6. The
same case was considered ‘‘Good’’ by surgeon 1 with a
better profile view than frontal (face appeared thinner
than subject). Case 3 was considered only ‘‘Good’’ by

FIGURE 2. Three graphs (one per dataset type) illustrate the average CPM distance and standard deviation for the three best
cases (blue bars with one bar per case), overall cases (green bar with average considering all cases) and for the three worst cases
(red bars with one bar per case) grouped by segments. Classification of the best and worst cases is according to the Nose + -
Mouth + Eyes region. Nose + Mouth + Eyes represents the error considering vertices from nose, mouth and eyes segments. Nose,
Mouth and Eyes represents the error considering vertices from each of the segments individually (nose, mouth and eyes
respectively). Different colors represent different subjects.

3D Face Reconstruction from 2D Pictures

Author's personal copy



both surgeons because of differences on the facial
curves around the cheek region.

The planning tools enabled emulation of various
aesthetic procedures. The rhinoplasty arrows that are
located in crucial points typically considered for
intervention allowed for easy manipulation of the nose
in 3D. Simple emulation of filling procedures could be
achieved by delineating the region to be filled and
varying the amount of filling to be injected. Wrinkles
could be quickly removed from the patient skin con-
sidering certain regions of the face. The planned pro-
cedure could be directly visualized on the 3D face from
different angles. Additionally, pre- and post procedure

emulation could be compared side by side in order to
emphasize the modifications achieved. An illustration
of the results of the planning tools validation on a
random case are displayed in Fig. 8.

DISCUSSION

This paper presents the first results of a web-based
computer assisted system for aesthetic procedure con-
sultations that enables physicians to emulate different
procedures on a virtual 3D representation of the
patient’s face. The application aims to facilitate

FIGURE 3. Three graphs (one per dataset type) illustrate the average TPS + CPM distance and standard deviation for the three
best cases (blue bars with one bar per case), overall cases (green bar with average considering all cases) and for the three worst
cases (red bars with one bar per case) grouped by segments. Classification of the best and worst cases is according to the
Nose + Mouth + Eyes region. Nose + Mouth + Eyes represents the error considering vertices from nose, mouth and eyes seg-
ments. Nose, Mouth and Eyes represents the error considering vertices from each of the segments individually (nose, mouth and
eyes respectively). Different colors represent different subjects.
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communication between physicians and patients. The
simple workflow requiring no additional expensive and
complicated hardware is a great advantage for plastic
surgeons, dermatologists, and aesthetic professionals
not having the resources to acquire current available
approaches, or reluctant to adopt such complex tech-
nologies. Current hand-held scanner are still optimized
for accuracy and lack on usability for clinics. Web
based applications provides not only world wide access
allowing for online discussions between physicians but

also simplify upgrades and maintenance (considered a
highlight in the clinical community) since doctors only
need to login and use the application. The pipeline is
based on standard 2D images that are already part of
the standard clinical workflow requiring therefore no
additional steps. The automatic steps of the applica-
tion are performed within a few seconds and are of no
concern in this scenario. Among the automatic meth-
ods, this work proposes a feature contour detection
that takes advantage of synthetic data generated by the

FIGURE 4. Example of good reconstruction results showing the input 2D pictures, the reconstructed 3D face with and without
texture, and the distance map.
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3D statistical model to facilitate the engineering of
applications similar to the presented here. Our results
have showed that physicians are able to reconstruct
faces of patients in less than an average of five minutes,
which allows the application to be used within stan-
dard consultation time. Since the application is going
to run on a server and the input images are scaled to a
standard size (e.g., interpupillary distance) before
processing, the processing time of those steps is
expected to be similar for different cases in the manual
Currently, the most time consuming parts of the

procedure are the manual definition of the facial
landmarks and correction of the facial feature contours
(averaging around 2 and 3 min, respectively). No dif-
ficulties with those steps were reported from volunteers
who tested the application since they are facilitated by
semi-supervised methods (e.g., spline contours). The
experiments with IMD cases, showed that the manual
correction of the facial feature contours can improve
the reconstruction results (see Fig. 6) but they were not
necessary for most of the cases. Therefore, faster less
accurate reconstructions can be obtained without

FIGURE 5. Example of bad reconstruction results showing the input 2D pictures, the reconstructed 3D face with and without
texture, and the distance map.
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manual correction depending on the need of each user.
Furthermore, automatic detection of manually defined
landmarks is part of future improvements of the system.

In this study, two distance measures were used
(considering CPM and TPS + CPM point corre-
spondence) to compare reconstruction and ground
truth. The comparison with the ground truth allowed
for identification of the distribution of error in the
face. The graphs showed that from the three regions
the mouth has usually higher error. Distance maps
showed that the cheek and the forehead regions con-
centrate most of the errors. However, as it can be seen
in Figs. 4, 5, and 7, the texture mapping plays an
important role on the overall perception of the face.
The texture seems to minimize perception of small
errors of the shape reconstruction. From our experi-
ments, it was noticed that imperfections are less per-
ceived when casually examining the reconstructed face
rather than thoroughly analyzing it, which is usually
the case when communicating a certain procedure to
the patient in a given dynamic clinical scenario. The
reconstructions in our evaluation presented a very
stable texture mapping. None of the cases showed
major texture problems such as background as part of
the face or stitching effect even for the IMD cases
without manual correction of the feature contours
(example in Fig. 6). The qualitative analysis performed
by two surgeons on the reconstructions showed that
most of the cases were evaluated as ‘‘Good’’ or ‘‘Very
Good’’, which supports the use of the application in
clinics. Although there were sub-optimal reconstruc-
tions, the surgeons would still use it to discuss with the
patient. According to the surgeons, ‘‘Bad’’ recon-
structions would reduce the visual impact of the

application, but not hinder its use as a communication
tool. From the clinical point of view, some recon-
structions gave different impression when analyzed
from different sights, which could make them less
suitable for discussing certain procedures than for
others. For example, a case with better frontal than
profile impression could be used for communicating
skin clearing or rejuvenating better than for other
procedures. Although texture could reduce some of the
perceived reconstruction errors, large errors in the
shape can still affect the overall appearance of the face.
For example, case 6 of Fig. 7 is also illustrated as sub-
optimal reconstruction in Fig. 5 with large errors on
the cheek bone region. Such errors in shape made the
subject look thinner than he actually is and reduced the
score gave by surgeon 2. According to the surgeons,
rhinoplasty or other profile altering surgical proce-
dures rely more on profile view and therefore on shape
reconstruction accuracy. Hence, accurate shape
reconstructions (illustrated on Figs. 2 and 4) can
facilitate discussions on rhinoplasty increasing the
power of the application as well as giving a better
overall impression to patients and physicians. None of
the cases were evaluated as ‘‘Excellent’’, showing that
there are limitations on the actual face appearance
reproduction accuracy when compared to 3D scanner
devices that require more complex setup and post-
processing. On our results, errors seemed to be higher
in subjects with features not belonging to the popula-
tion used to create the 3D statistical shape model used
in this work (200 young Caucasians). Therefore, future
work includes extending the range of face representa-
tions of our application by expanding the current 3D
statistical shape model and by creating similar models

FIGURE 6. Example of reconstruction improvement with manual feature contour correction of two IMD cases. Case one (first row)
show most improvements in the eyes and lips region, while case two (second row) show most improvements in the mouth region.
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for different races. Additionally, wrinkles are typically
not reconstructed on the shape in the current version
since the model was mostly created with young sub-
jects. Therefore, wrinkles are represented as texture
only.

The planning tools were created using feedback from
plastic surgeons and optimized for fast and intuitive 3D
operations. Mainly, the proposed operations can be
performed on real time on the web browser of common
personal computers. The application offers possibilities

FIGURE 7. Example of reconstructed cases. From left to right, the figure shows the original images (part of the input), the
respective reconstructed 3D face from 4 points of view, and the evaluation of surgeons 1 and 2 according to Table 2.
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of emulating filling, skin clearing or rejuvenation, and
rhinoplasty procedures. Additionally, visualization
tools allow the user to compare pre, and post-interven-
tion scenarios in a synchronized way, which enriches the
decision making of the physician and the communica-
tion to the patient.

In summary, we have presented the first results of a
developed web-based 2D to 3D facial reconstruction
tool which provides sufficiently high precision for com-
munication between physician and patients for visuali-
zation of facial treatment options. Patient
understanding about the aesthetic procedure, and con-
sequently satisfaction with the consultation, is expected
to increase with the use of 3D virtual face representation
and procedure planning. The current results warrant
further evaluation of the application in clinical setting
with evaluation of this novel method at large scale by
physicians, aesthetic professionals and patients.

APPENDIX

Let s = (s1,…,sm) be a set of m shapes represented
by p corresponding vertices si = v = (v1,…,vp)

T where

vi 2 R3 and represent x, y and z coordinates. New
shape instances v where v X s, can be created with a
linear combination of weights

v ¼ �vþ Pv diagðrvÞbv; ð1Þ

where �v ¼ 1
m

Pm
i¼1 si is the mean shape,

Pv ¼ ðPv
1; . . . ;Pv

mÞ is a matrix of eigenvectors and di-
ag(rv) is a diagonal matrix with the respective eigen-
values that can be obtained by applying principal
component analysis (PCA)10 to the m shapes, and
bv = (b1

v,…,bm)
T is a vector of weights where bi

v 2 R.
With an analogous approach, the texture values of

the vertices of these shapes si
t = t = (t1,…,tp)

T, where
ti 2 R3 and represent r, g and b values, can modeled as
a linear combination of weights, bt = (b1

t ,…,bn
t )T. New

texture instances can be estimated as

t ¼ �tþ PtdiagðrtÞbt; ð2Þ

where �t ¼ 1
m

Pm
i¼1 s

t
i is the mean texture, Pt = (P1

t ,…,Pn
t )

is a matrix of eigenvectors and is diag(rt) is a diagonal
matrix with the respective eigenvalues that can be
obtained by applying PCA to the m shape textures.

FIGURE 8. Illustration of the 3D planning tools. (a) Tools for nose correction that can be used for rhinoplasty. (b) Tools for
emulating filling procedures in which physicians define a region and an amount to be filled. (c) A tool for cleaning the skin. (d) A
comparison of pre- and post procedure planning.
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A 2D statistical shape model can be created with a
similar approach, but considering a set of h feature
contour points fa = (f1,…,fh)

T, where fi 2 R2 and rep-
resents x and y coordinates, and a 2 {‘‘fi’’, ‘‘ri’’, ‘‘li’’}
indicating frontal, right profile and left profile images
respectively, to be automatically detected in the
images. Let la = (l1,…,lk)

T, where li 2 R2, li � fi, and
represents x and y coordinates, be a set of k manually
defined landmarks. The 2D ground truth location of
the facial feature contour points fa used for training the
2D ASM is calculated as

ffi ¼ Tpfi Tsfiv; fri ¼ Tpri Tsriv; ð3Þ

where Tpfi and Tpri represent the frontal and right
profile 3D to 2D projections respectively, Tsfi and Tsri

are transformations (manually defined offline) to select
a subset of vertices representing facial feature on the
3D mean shape (i.e., the landmarks lfi, lri, and lli, and
additional features such as eyes contour, mouth con-
tour, etc.). Random shapes and texture used for
training of the 2D ASM were generated by varying the
weights bv and bt in Eqs. (1) and (2) according to a
normal distribution.

The 2D facial feature contour points search was
performed in two steps. Firstly, an initial alignment of
the mean shape, ffi or fri; with the manually defined
landmarks, lfi or lri, was performed following

ffi� ¼ TPSðPROCðffl; lfiÞ; lfiÞ;
fri� ¼ TPSðPROCðfrl; lriÞ; lriÞ;

ð4Þ

where ffi� and fri� are the initial position of the shape
search for the frontal and right profile respectively,
TPS(m,n) is a thin plate spline transformation of the
point set m to a subset of control points n, and
PROC(m,n)is a Procrustes transformation of the point
set m to a subset of points n. Secondly, an iterative
process5 searches for the optimal 2D shape, i.e., ffi, fri,
and fli for frontal, right profile and left profile respec-
tively.

With the set of points representing 2D facial feature
contours from different point of views, the optimal
weights bv can be found by minimizing the energy
function8:

E ¼ 1

3
TpfiTsfi PvdiagðrvÞbv � �vð Þ � ffi � TpfiTsfi�v

� ��
�

�
�2

þ 1

3
TpriTsri PvdiagðrvÞbv � �vð Þ � ðfri � TpriTsri�vÞ
�
�

�
�2

þ 1

3
TpliTsli PvdiagðrvÞbv � �vð Þ � ðfli � TpliTsli�vÞ
�
�

�
�2

þ g bvk k2 ð5Þ

where the first three lines represent the contribution of
contour points in each image (frontal, right profile, and

left profile respectively) and the last line represents a
prior to keep the desired shape close to the shape of
a human face, in this case the mean shape. The last
line is necessary because the energy function can
converge to different minimums, and the optimum
minimum when assuming an error on locating the
facial feature contour points might result on a non-
face-like shape. A closed form solution to solve the
equation above in one step can be found in Blanz
et al.2 and Faggian et al.8 Finally, bv is replaced in
the in equation 1 to reconstruct the 3D shape of the
patient’s face.

After the final patient’s face shape is reconstructed,
the texture mapping is performed as follows. Firstly,
two intermediate textures are generated, tfi frontal and
tpi profile. See Eqs. (6) and (7).

tfi ¼ RGBðPROCðTpfiv; ffiÞ; IfiÞ; ð6Þ

where Ifi is the frontal image of the patient, and
RGB(m, n) is a function that gets the list of r, g, and b
values out of the image n at the locations m.

tpi ¼ RGBltðPROCðTpriv; friÞ;PROCðTpliv; fliÞ; Iri; IliÞ
ð7Þ

where Iri and Ili are the right and left profile images of
the patient respectively, and RGBlt(mr, ml, nr, nl) is the
function that gets the list of r, g, and b values out of the
image, nr or nl, at the locations mr or ml depending
whether vi is located on the left or right side of the
shape. Finally, the two intermediate textures are
blended in one texture image Itx

Itx ¼MULTIBANDðT�vtxtfi;T�vtxtpi; ImskÞ; ð8Þ

where Imsk is a mask (generated offline) separating
frontal and profile portions of a face in the Itx space,
T�vtx is a transformation to map shape vertices con-
sidering the mean shape to a texture image (surface
parameterization9 obtained offline using the mean
shape), and MULTIBAND(nf, nl, nm) is a multi band
multiband filter4 that blends images nf and nl according
to the mask image nm.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1007/
s10439-013-0744-3) contains supplementary material,
which is available to authorized users.
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