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Abstract—Recent advancements in learning techniques that
employ coordinate-based neural representations have yielded
remarkable results in multi-view 3D reconstruction tasks. How-
ever, these approaches often require a substantial number of
input views (typically several tens) and computationally intensive
optimization procedures to achieve their effectiveness. In this
paper, we address these limitations specifically for the problem
of few-shot full 3D head reconstruction. We accomplish this by
incorporating a probabilistic shape and appearance prior into
coordinate-based representations, enabling faster convergence
and improved generalization when working with only a few input
images (even as low as a single image). During testing, we leverage
this prior to guiding the fitting process of a signed distance
function using a differentiable renderer. By incorporating the
statistical prior alongside parallelizable ray tracing and dynamic
caching strategies, we achieve an efficient and accurate approach
to few-shot full 3D head reconstruction.

Moreover, we extend the H3DS dataset, which now comprises
60 high-resolution 3D full-head scans and their corresponding
posed images and masks, which we use for evaluation purposes.
By leveraging this dataset, we demonstrate the remarkable
capabilities of our approach in achieving state-of-the-art results
in geometry reconstruction while being an order of magnitude
faster than previous approaches.

Index Terms—Neural Radiance Field, Signed Distance Func-
tion, Few-shot 3D Reconstruction

I. INTRODUCTION

In recent years, the digitalization of humans has emerged
as an important area of research. The ability to create accurate
digital representations of individuals holds immense value
across a wide range of applications, including Virtual Reality
(VR), Augmented Reality (AR), healthcare, entertainment, and
security. To achieve this, the process often entails capturing
photographs of a scene using conventional cameras or mo-
bile devices. However, generating 3D reconstructions under
non-controlled conditions or with a limited number of input
images can be particularly challenging [1]–[4]. Among these
challenges, the single-view setup stands out as the most ill-
posed scenario. It involves a highly under-constrained problem
that cannot be effectively solved without prior knowledge or
additional information [5]–[10].

Statistical priors based on 3D Morphable Models [1]–[8],
[10], [11] have become the standard approach for few-shot

∗ Work done prior joining Amazon.
†Work done prior joining Astrazeneca.

3D face reconstruction. By adopting 3DMMs as a represen-
tation, the problem of 3D reconstruction can be simplified
to estimating a small set of parameters that effectively cap-
ture a target 3D shape. This enables the generation of 3D
reconstructions from small sets of images [1]–[4], even when
only a single view is available [5]–[8], [10]. However, one
significant drawback of morphable models is their limited
expressiveness, particularly for capturing high-frequency de-
tails. To address this issue, researchers have explored post-
processing techniques that transfer fine details from the image
domain to enhance the 3D geometry [8], [10], [12]. Another
limitation of 3DMMs is their inability to represent complex
shapes and diverse topologies. Consequently, they are not well-
suited for reconstructing complete heads with features such as
hair, beard, facial accessories, and upper body clothing.

Model-free approaches based on discrete representations
such as voxels [13], meshes or point clouds offer greater
flexibility in representing a wide range of shapes. However,
they come with computational limitations, as they face scala-
bility challenges as resolution increases or are limited to fixed
topologies. Despite significant advancements in computational
resources in recent years, there remains a trade-off between
resolution and memory. Overcoming these challenges, neural
fields [14]–[21] have emerged as a solution that encodes both
geometry and appearance as a continuous coordinate-based
function within the weights of a neural network. Notably,
recent work by [22], [23] has demonstrated the success of such
representations in learning detailed 3D geometry directly from
images, even in the absence of 3D ground truth supervision.
Unfortunately, these methods currently rely on a significant
number of input views, leading to time-consuming inference
and limiting their applications.

Optimization-based techniques iteratively refine model pa-
rameters to minimize a cost function, resulting in high accu-
racy and fine detail capture [24], [25]. On the contrary, feed-
forward methods highly rely on the quality and variability
of the training data which limits their ability to reconstruct
fine details in out-of-distribution samples at test time [26].
Nonetheless, they offer the advantage of speed and computa-
tional efficiency, making them suitable for real-time applica-
tions [27]–[31].

Recent advancements in this field, highlighted by H3D-
Net [32] leverage large 3D scan datasets to integrate prior
geometric knowledge into neural field models, allowing for
significantly improved accuracy of full-head 3D reconstruc-
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Fig. 1. Few-shot full-head reconstruction using SIRA++. Our approach enables high-fidelity 3D head reconstruction using only a few images. The figure
showcases two examples, one obtained from a single input image (in 92 seconds) and the other from three input images (in 191 seconds). For each example,
we present the input image/s on the left and the corresponding reconstruction on the right, including the 3D mesh, rendered mesh, and normal maps. The
results demonstrate the effectiveness and efficiency of our method in generating detailed 3D head avatars with minimal input data.

tions, even when only a limited number of input images are
available. Nonetheless, it is worth noting that [32] still faces
challenges in terms of computational cost, demanding several
hours of optimization per scene at inference time, and it is
not suitable for scenarios where only a single input image is
available.

To address the limitations of H3D-Net, we propose a novel
prior that combines shape and appearance information. Our
approach leverages an extensive dataset of 10.000 textured
3D head scans to pretrain an architecture consisting of two
primary neural field decoders. The first decoder focused on
modeling the complete geometry of the head using a signed
distance function (SDF) as a 3D representation. The second
decoder aims to capture the head appearance, including the
face region, hair, and clothing of the upper torso. During
inference, we utilize this pre-trained appearance and shape
prior to initialize and guide the optimization of an Implicit
Differentiable Renderer (IDR) [23] that, given a reduced
number of input images, estimates the full head geometry. The
learned prior facilitates faster convergence during optimization
(∼191 seconds per 3 input images) and prevents the model
from getting trapped in local minima. As a result, our method
produces 3D shape estimates that capture fine details of the
face, head, and hair from just a single input image.

The core of our approach, dubbed SIRA, has been previ-
ously presented in [33]. In this journal submission, we expand
upon [33] through innovative strategies to efficiently eliminate
non-intersecting rays. These strategies, combined with a par-
allelizable ray tracing algorithm and dynamic caching, result
in a remarkable acceleration of over 10× compared to the
previous implementation. We refer to this enhanced version
of the approach as SIRA++.

Moreover, in this submission, we provide an in-depth anal-
ysis of SIRA++ for multi-view setup, including the joint shape
and appearance priors, camera noise robustness, extended
comparison with new 8 SOTA methods, as well as extensive
evaluation in-the-wild CelebA-HQ dataset. In addition, we
have made significant enhancements to the H3DS dataset,
which consists of high-resolution 3D full head scans, images,
masks, and camera poses, originally introduced in [32]. Our

expansion has considerably increased the dataset size from
10 to 60 samples, resulting in a more extensive and diverse
collection of data. This enhanced H3DS dataset serves as
the foundation for a thorough evaluation of the performance
of SIRA++. We compare our method with H3D-Net [32],
SIRA [33], and other mesh and field based state-of-the-art
approaches.

The experimental results demonstrate that SIRA++ sur-
passes H3D-Net by a substantial margin in terms of recon-
struction error of the full head. Moreover, SIRA++ achieves
comparable performance to SIRA but with significantly lower
computational cost. Additionally, we compare SIRA++ with
recent approaches that are based on parametric models, solely
providing a 3D reconstruction of the face region rather than
the entire head. SIRA++ consistently demonstrates improved
results compared to these methods.

In summary, this work builds upon our earlier versions
of H3D-Net [32] and SIRA [33], which were pioneering
approaches in utilizing implicit functions for the reconstruction
of full 3D human heads from a limited number of images.
In this submission, we enhance the reconstruction accuracy
of H3D-Net by introducing a novel data-driven prior that
combines shape and appearance. Additionally, we significantly
improve the computational efficiency of SIRA by implement-
ing parallelizable ray tracing and dynamic caching strategies.
These advancements result in an algorithm that is highly
efficient and accurate for full 3D head reconstruction, even
when only a few images are available (including the most
challenging case of a single image). Fig. 1 shows two examples
of the reconstructions we obtain from one (in 92 seconds) or
five (in 191 seconds) input images.

Furthermore, this submission includes an extended version
of the H3DS dataset, which we will make publicly available
for evaluation purposes. This expanded dataset will provide
researchers and practitioners with a valuable resource for as-
sessing and benchmarking their algorithms and methodologies
in the field of 3D head reconstruction.

II. RELATED WORK

In this section, we review the related work on face and
full head reconstruction, with a primary focus on statistical
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Fig. 2. Overview of SIRA++. Left: We construct a surface appearance statistical model using a dataset of raw head scans paired with multiview posed
images. This involves learning a codebook of shapes zsdf and appearances zrend, alongside two decoders that approximate a signed distance function and
a renderer. The prior is trained using an autodecoder approach. Right: The pre-trained prior model is integrated with the implicit differentiable renderer. To
begin the optimization process with a plausible human head, we sample from the manifold of shape and appearance latents. During the initial iterations, our
focus is on training the latents to approximate the closest human head within our statistical model. Subsequently, we unfreeze the deformation and rendering
networks, enabling fine-tuning of the fine details. Throughout the entire optimization phase, the reference network remains frozen, ensuring consistent results.

morphable models and recent advancements in neural fields
for 3D reconstruction. Note that while there exists extensive
literature on 3D body reconstructions, our paper specifically
narrows its scope to those dealing with the full head region.

Statistical morphable models. The utilization of 3D Mor-
phable Models (3DMMs) has become the predominant
paradigm for face reconstruction from images, particularly
in single-view or few-shot scenarios. These statistical models
[34]–[36] are widely adopted and primarily focus on the face
region. In the context of single-shot methods, remarkable
capabilities in face reconstruction have been demonstrated by
[5], [27]–[30], even in challenging in-the-wild scenes. In an al-
ternative approach, [37], [38] employ a generative adversarial
network for 3D face fitting. Recent works have also employed
3DMMs to estimate 3D geometry and spatially varying surface
properties, such as diffuse and specular albedos, along with
global illumination properties [28], [39], [39].

Achieving higher fidelity face reconstructions can be ac-
complished by leveraging multiple input images [1], [3],
[40]. Previous approaches have predominantly focused on
optimizing model parameters through a multi-view analysis-
by-synthesis strategy [28], [39]. To enhance robustness in
specific face areas, [41] utilizes occlusion cues. Furthermore,
[27] proposes learning the statistical model within a metric
space to effectively capture variations in scale. Other works
[42] introduce emotional information to improve expression
capture. Nevertheless, While these models have advanced 3D
face reconstruction, they struggle to capture fine anatomical
details and they are limited to the face region.

Neural fields for 3D reconstruction. In recent years, neural
fields have emerged as the leading approach for scene repre-
sentation [43], yielding remarkable results in novel view syn-
thesis [16], [20], [24], [44], [45] and 3D reconstruction [22],
[23], [32], [46]. These techniques have found practical ap-

plications in modeling full-head avatars [44], [47]–[49]. By
leveraging surface priors [17] and surface rendering [23],
neural fields enable highly accurate 3D reconstructions of
the full head, encompassing intricate details such as hair
and shoulders [32], [48]. [50] employs a similar approach
to construct implicit morphable faces with consistent texture
parameterization and introduces single-shot inversion to obtain
reconstructions from input images. This method, however,
requires substantial computational time, with a single scene
taking approximately 3 hours to process.

In an effort to enhance the geometric detail of morphable
models, several approaches have combined them with implicit
representations. For example, [51] enhances a morphable
model representation through the use of an implicitly learned
displacement field. However, this approach is limited to the
face region. On the other hand, full head reconstruction is
achieved in [52] through a feed-forward network that learns
vertex displacements throughout the entire head. Another
hybrid representation is proposed in [53], which combines
the fine-grained control mechanism of 3DMMs with the high-
quality representation of implicit functions parametrized by
neural networks. This approach enables the generation of
animatable full-head avatars from videos. In an effort to
expedite the training and rendering process, [54] introduces
a deformable point-based representation. Unfortunately, all
of these approaches still rely on a significant number of
input frames, which diverges from the few-shot or single-shot
scenarios considered in this paper.

Recently, model-free approaches in combination with pixel-
aligned features [19], [55]–[59] have emerged as an approach
to obtain fast reconstructions as they don’t require test-time
optimization. PIFU [19] introduced the concept of pixel-
aligned features to condition a learned occupancy field from
single to multiple input images and Phorum [57] extended
it by using a signed distance field as a shape representation.
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JIFF [60] combines features from a face morphable model
to enhance high-frequency details and KeypointNeRF [61]
aggregates pixel-aligned features with a relative spatial en-
coder using volumetric rendering. However, pixel-aligned sin-
gle feed-forward methods are still behind optimization-based
approaches in terms of quality reconstruction. As we will
show in the experimental section, these methods do not always
guarantee realistic and accurate full-head reconstructions and
are sensitive to camera pose estimation as they don’t optimize
cameras at test time.

III. METHOD

A. Problem Formulation

Our objective is to recover the 3D head surface, denoted as
S, from a small set of N ≥ 1 input images Iv , where v =
1, . . . , N . Each input image is accompanied by its respective
head mask Mv and camera parameters Tv . We represent the
surface S as the zero-level set of a signed distance function
f sdf : x → s, such that S = {x ∈ R3 | f sdf(x) = 0}.
After estimating f sdf from the visual cues Iv , Mv and Tv ,
the surface S can be obtained as a post-processing step using
Marching Cubes [62]

To tackle the inherent underconstrained nature of recovering
3D geometry from image data, the incorporation of regulariza-
tions is crucial in resolving existing ambiguities. The problem
becomes increasingly challenging as the number of avail-
able images decreases. We specifically address this challenge
within a range of 1 to 32 views, where the one-shot regime
poses the greatest difficulty due to the absence of multi-view
cues to disentangle geometric and color information. To tackle
this challenge, we propose a novel architecture that capitalizes
on both geometric and appearance priors. By harnessing these
priors, our approach achieves precise 3D reconstructions even
in scenarios lacking multi-view consistency.

We recover the 3D geometry from the input images through
analysis-by-synthesis with differentiable surface rendering as
in [23], [32]. Our proposed architecture addresses the chal-
lenge of limited multi-view information by leveraging two key
inductive biases. Firstly, we decompose the signed distance
function f sdf into a reference SDF and a deformation field
[63]. This parameterization serves as an implicit bias, ensuring
that the composed SDF remains close to the reference. Sec-
ondly, we create a statistical prior that models the variations
of shape and appearance of 3D head surfaces. This model
is used during inference to achieve a reliable initialization
and faster convergence. To enhance the robustness of the
analysis-by-synthesis process during inference, we optimize
the parameters of this statistical model, drawing inspiration
from [32], to achieve a reliable initialization. These inductive
biases significantly enhance the performance of SIRA++,
surpassing that of [32].

B. Surface Appearance Statistical Model (SA-SM)

In order to learn a statistical model capturing head shapes
and appearances (Fig. 2), we curate a dataset comprising
scenes that contain raw head scans along with corresponding
multiview posed images. For each scene, denoted by an index

i = 1 . . .M , we extract a collection of surface points x ∈ P(i)
s

along with their respective normal vectors n. We project each
surface point onto the images where it is visible, obtaining
a set denoted as C(i)

x = (c,v), which consists of pairs
comprising the associated RGB color c and the corresponding
viewing direction v.
SA-SM Architecture: Our architecture consists of two pri-
mary neural field decoders: an SDF decoder denoted as
f sdf
θsdf ,zsdf

, and a rendering function decoder represented as
rθr,zr . Here, zsa = {zsdf , zr} refers to the latent vectors
encompassing the shape and appearance spaces of the SA-
SM. Additionally, θsa = {θsdf ,θr} denotes the parameters
associated with their respective decoders.

The SDF decoder consists of two sub-functions: a defor-
mation field and a reference SDF. Our experimental results
(Section VI-B, Figure 6 and Table II) demonstrate that this
separation introduces an implicit bias, effectively limiting
significant deviations from the reference SDF. As a result,
it enhances the stability of few-shot 3D reconstructions. The
deformation field, is mathematically defined as:

fdef
θdef ,zsdf

: R3 → R3+Nγ , x 7→ (δ,γ), (1)

is parameterised by internal parameters θdef and the latent
vector zsdf . It maps input coordinates, x, to a deformation 3-
vector, δ. Additionally, it generates an auxiliary feature vector
γ of dimension Nγ , which encodes higher-level geometric
information utilized by the differentiable renderer [23]. Note,
however, that the rendering network does not include global
lightning effects such us secondary lightning and self-shadows,
as it is only conditioned on position, viewing direction, nor-
mals, and the appearance latent.

The predicted deformation is utilized to map an input
coordinate x to a coordinate xref within a reference space. In
this reference space, we evaluate a reference signed distance
function (SDF) f ref

θref
, which is parameterized by internal

parameters θref . This mapping process is expressed as follows:

xref = x+ δ, (2)
f ref
θref

: R3 → R , xref 7→ s. (3)

Combining the components described above, we obtain the
composed SDF decoder:

f sdf
θsdf ,zsdf

: x 7→ f ref
θref

(xref), (4)

where the decoder internal parameters are θsdf = (θdef ,θref).
The second main component of our architecture is the render-
ing function:

rθr,zr
: (xref ,n,v,γ) 7→ c , (5)

which is parameterised by internal parameters θr and a latent
vector zr. This function assigns an RGB color c, to each
combination of 3D coordinates in the reference space xref ,
unit normal vector n, and unit viewing direction vector v in
the real space.
SA-SM Training: To train our SA-SM we adopt an auto-
decoder framework in which each scene is associated with
a set of latents z

(i)
sa = {z(i)sdf , z

(i)
r }. These latents are opti-

mized alongside the statistical model parameters θsa. Upon
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Fig. 3. Latent shape interpolation. Each row of the figure depicts a
latent interpolation between different subjects, controlled by a weight α.
This interpolation process showcases the smooth and gradual transformation
of shapes, reflecting the continuous variation in human head representations
along the latent space.

completion of training, we obtain the optimized parameters
θsa,0 = {θsdf,0,θr,0} which establish that any combination
of latents (zsdf , zr) within the latent space corresponds to
a well-behaved SDF, f sdf

θsdf,0,zsdf
and appearance f rend

θr,0,zr
of a

human head. To simplify notation and reduce complexity, we
subsequently omit the dependency on the decoder’s internal
parameters.

In order to capture the space of head shapes, we sample a
set of points on the surface of each training scan denoted as
P(i)
s . Subsequently, we compute the surface error loss given

by:
L(i)
Surf =

∑
xj∈P(i)

s

|f sdf

z
(i)
sdf

(xj)|. (6)

In addition, we uniformly sample another set of points from
the scene volume, P(i)

v , and compute the Eikonal loss [64]:

L(i)
Eik =

∑
xk∈P(i)

v

(∥∇xf
sdf

z
(i)
sdf

(xk)∥ − 1)2. (7)

To encourage small-magnitude and zero-mean deforma-
tions, we incorporate a regularization term that prevents so-
lutions where the deformations unnecessarily compensate for
offset or scaled reference SDFs. The regularization term is
defined as:

L(i)
Def =

1

|P(i)
s |

( ∑
xj∈P(i)

s

∥δ(i)j ∥2 +
∥∥∥∥ ∑
xj∈P(i)

s

δ
(i)
j

∥∥∥∥
2

)
, (8)

where δ
(i)
j represents the deformation vector applied to the 3D

point xj within the scene indexed by i.
Similar to the approach in [63], we employ a landmark

consistency loss to ensure consistency among the 3D face

landmarks. For each scene i, we automatically annotate a set of
3D face landmarks denoted as {x(i)

l } where l = 1 . . . L. We
then define the following loss that measures their deformed
coordinate mismatch between pairs of scenes:

L(i)
Lm =

∑
j ̸=i

L∑
l

∥x(i)
ref,l − x

(j)
ref,l∥

2 , (9)

where x
(i)
ref,l represents the position of landmark l of scene i

in the reference space.
The SA-SM model learns a distribution of head appearances

from the posed images associated with each training scene.
To evaluate the rendering function (Eq. 5), we calculate the
coordinates in the reference space xref corresponding to the
surface point (Eq. 3), along with the high-level descriptor
γ (Eq. 1). Additionally, we extract the surface normals, n,
by normalizing the gradient of the SDF [23]. Using these
components, we define the color loss as follows:

L(i)
Col =

∑
x∈P(i)

s

∑
(c,v)∈C(i)

x

∥r
z
(i)
r
(xref ,n,v,γ)− c∥ . (10)

Finally, the L(i)
Emb term enforces a zero-mean multivariate-

Gaussian distribution with spherical covariance of σ2 over
the spaces of shape and appearance latent vectors: L(i)

Emb =
1
σ2

(
∥z(i)sdf∥2 + ∥z(i)r ∥2

)
. Combining all the loss terms, we

minimize the following objective:

argmin
{z(i)

sa },θsa

∑
i

L(i)
Surf + λ1L(i)

Eik + λ2L(i)
Def + λ3L(i)

Lm+

λ4L(i)
Col + λ5L(i)

Emb

(11)

where λ1−5 are scalar hyperparameters.
Expressivity of the SA-SM Prior: In order to assess the
representation power of the shape and appearance prior we
have learned, we conduct simple experiments by fitting our
model to unseen subjects and interpolating their latent codes.
In Fig. 3, we illustrate this process specifically for the shape
prior. The ability to represent diverse fitting subjects indicates
a rich and expressive manifold that captures diverse human
head variations. Notably, the latent interpolation between
different subjects (even across different genders) results in a
remarkably smooth transition of feasible human heads. This
observation highlights the structure and continuity of the
learned latent codes. In Fig. 4, we present a similar experiment
where we simultaneously interpolate in both the shape space
(vertical direction of the figure, governed by the weight α) and
the appearance space (horizontal direction, controlled by the
weight β). Once again, we observe that our learned shape-
and-appearance prior gracefully transitions between the two
subjects represented at the top-left and bottom-right corners of
the figure. Interestingly, we observe that while the appearance
latent effectively captures most of the color variance, such as
the t-shirt, certain details like the mustache and beard are better
represented by the geometry latent. This phenomenon arises
because SIRA++ jointly models a distribution of 3D shapes
and appearances, enabling the geometry latent to explain color
variations that are statistically correlated with the underlying
geometry.
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Fig. 4. Latent shape and appearance interpolation. This figure shows the
joint shape and appearance latent interpolation between two subjects (top-
left and bottom-right). Shape interpolation of the latent zsdf is controlled by
means of the weight α. Appearance interpolation of zr is controlled by β.

C. Geometry Reconstruction

With our pre-trained statistical model at hand, we can tackle
the task of obtaining a 3D reconstruction and an appearance
from portrait images Iv with associated camera parameters Tv

and foreground mask Mv .
To obtain precise 3D reconstructions of new scenes, our

approach involves rendering the geometry described by f sdf

using the differentiable rendering function r from Eq. 5, while
minimizing a photoconsistency error. Here’s a step-by-step
breakdown of our process:

First, for a given pixel coordinate p in the input image Iv ,
we sample a ray r = t+ kv|k ≥ 0, where t represents the
position of the associated camera Tv , and v is the viewing
direction. We then find the intersection coordinates of this ray
with the composed SDF (Eq. 4).

Next, we make this intersection point differentiable with
respect to zsdf and θsdf through implicit differentiation [22],
[23]. The resulting differentiable intersection coordinates xs

enable us to obtain their associated 3D displacement δ and
feature vector γ (Eq. 1), as well as their corresponding
coordinates in the reference space xref (Eq. 3), along with
the normal vector n = ∇xf

sdf .
Finally, we compute the color associated with the ray as

c = r(xref ,n,v,γ) using the differentiable rendering function
r.

In order to optimize zsa and θsa, we minimize the following
loss [23]:

L = LRGB + λ6LMask + λ7LEik, (12)

where λ6 and λ7 are hyperparameters.

TABLE I
TESTING TIME COMPARISON ON H3DS DATASET WITH 1 AND 3 INPUT

VIEWS. SS STANDS FOR SELECTIVE SAMPLING.

Test time Test time Time
1 view ↓ 3 views ↓ reduction ↑

MVFNet [1] - < 10s -
DFNRMVS [3] - < 10s -

DECA [28] < 10s - -
MICA [27] < 10s - -

FaceScape [29] < 10s - -
FaceVerse [30] 720s - -

HRN [31] < 5s − -
PIFU [19] < 10s < 10s -
JIFF [60] < 10s < 10s -
IDR [23] - ∼ 1000s -

NeuS2 [25] - ∼ 300s -
H3D-Net [32] - 1050s -

SIRA [33] - 3663s -

SIRA++ (w/o SS, w/o Cache) - 379s 0%
SIRA++ (w SS, w/o Cache) - 275s 27%
SIRA++ (w/o SS, w Cache) - 232s 39%
SIRA++ (w SS, w Cache) - 191s 50%

We will now elaborate on each component of this loss. Let
P be a mini-batch of pixels from the image Iv . We define
PRGB as the subset of pixels whose associated ray intersects
the surface defined by f sdf and have a nonzero foreground
mask value, while PMask = P \ PRGB. Let’s delve into the
specifics:

The first component, LRGB, addresses photometric error,
which is computed as follows:

LRGB = |P|−1
∑

p∈PRGB

|Iv(p)− cv(p)|. (13)

The second component, LMask, accounts for silhouette
errors. It is defined as:

LMask =
1

λ8|P|
∑

p∈PMask

CE(Mv(p), sλ8
(p)) , (14)

where s(p) = sigmoid(−λ8 mint≥0 f
sdf(rt)) is the estimated

silhouette. We use the binary cross-entropy CE to measure
the difference between the foreground mask Mv(p) and the
estimated silhouette s(p) for each pixel p in PMask.

Lastly, LEik encourages f sdf to approximate a signed dis-
tance function.

Instead of optimizing all the parameters θsdf ,θr, zsdf , zr
simultaneously, we propose a two-step schedule. First, we
initialize the geometry and rendering functions with the param-
eters obtained from the pretraining described in the last sec-
tion, denoted as θsdf,0,θr,0. The initial shape and appearance
latents, zsdf and zr, are sampled from a multivariate normal
distribution with zero mean and a small variance, ensuring
that they start near the mean of the latent spaces. In the first
optimization phase, we exclusively optimize the shape and
appearance latents. This yields an initial approximation within
the previously learned shape and appearance latent spaces.
Subsequently, in the second phase, we unfreeze the parameters
of the deformation and rendering networks, denoted as θdef ,θr

(Eqs. 1 and 5), while keeping the parameters of the reference
Signed Distance Function (SDF), θref , frozen.
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This two-step scheduling plays a pivotal role in achieving
accurate results, particularly in the one-shot regime. By un-
freezing the deformation and rendering networks, we can attain
highly detailed solutions that lie outside of the pre-learned
latent spaces. However, a crucial aspect of our approach is
expressing the shape as a deformed reference Signed Distance
Function (SDF), which acts as a regularization mechanism,
ensuring proper training convergence.

The fine-tuned shape parameters resulting from this two-
step process are denoted as θdef,ft and zsdf,ft.

IV. ACCELERATING RECONSTRUCTION GEOMETRY

Reconstruction methods relying on surface rendering often
require considerable time to find the intersection between
cast rays and the reconstructed surface, leading to run times
ranging from 15 minutes to several hours per scene [23],
[32], [33]. To address this challenge, we have introduced sev-
eral enhancements in SIRA++, including code optimization,
adoption of a more parallelizable ray tracing algorithm [65],
implementation of a new scheduler to discard non-intersecting
rays, and dynamic caching of the Signed Distance Function
(SDF) during training. These improvements, as depicted in
Table I, yield a substantial reduction in overall computation
time, making our proposed method significantly faster and
more efficient in comparison to existing techniques. In the
following sections, we provide a detailed explanation of each
of these enhancements.
Code optimitzation. SIRA++ has been developed within the
PyTorch framework, with accelerated training on a single
GPU. To optimize performance, we employ mixed preci-
sion during the ray tracing step, group query points into a
single batch to minimize GPU calls, and minimize the use
of memory copy instructions (e.g., reshape, concatenations,
clones). Additionally, we strategically fuse operations, such as
expressing sinus and cosines as a single call in the positional
encoder. These measures collectively contribute to enhancing
the efficiency and speed of the SIRA++ framework during the
training process.
Selective sampling. In traditional 3D reconstruction methods
based on surface or volumetric rendering, rays are often
uniformly sampled on the image, leading to many rays ineffi-
ciently sampling empty space far from the surface. To enhance
the efficiency of our reconstruction process, we implement a
progressive strategy where we gradually stop sampling rays
from the background during the optimization. This approach
significantly reduces computational time while preserving the
same level of reconstruction accuracy. By intelligently fo-
cusing on rays closer to the surface of interest, we achieve
a faster and more efficient reconstruction process without
compromising the quality of the final results.
Dynamic SDF caching. To efficiently find a ray-surface
intersection, we search for the first sign flip of the Signed
Distance Function (SDF) among a set of Nc equally-spaced
points along the ray. However, to reduce the number of MLP
queries, we implement a caching mechanism using a voxel
grid. When we sample a point belonging to a voxel with a
cached SDF value s, we compare it with a threshold ϵ. If

Fig. 5. H3DS Dataset. Three samples from the dataset, each scene composed
of 60-100 RGB images, foreground masks, camera parameters, and high-
resolution textured 3D meshes capturing the full head, including hair and
upper body clothing .

s ≥ ϵ, we consider the point to be far from the surface and
safely reuse the cached value. Otherwise, we re-evaluate the
SDF network and update the cache accordingly.

To prevent deadlocks, where the cached SDF value remains
unjustifiably greater than ϵ, we introduce a random forcing
mechanism. With a probability p, we deliberately trigger the
evaluation and re-caching of the SDF network. After locating
the interval where the first SDF sign flip occurs, we further
refine the intersection estimation by repeating this process with
a set of Nf sub-sampled points.

V. IMPLEMENTATION DETAILS

Equations 1, 3 and 4 are implemented using Multi-Layer
Perceptrons (MLPs) with one skip connection from the net-
work’s input to the input of a hidden layer, following the
approach used in [66]. We incorporate a SoftPlus activation
function in all the hidden layers of the network architecture.
Additionally, positional encoding (PE) [67] is applied to
some of the inputs of the networks, further enhancing their
representation capabilities.

The SA-SM pretraining optimization is iterated for 100
epochs using the Adam optimizer [68] with standard parame-
ters. We set the learning rate to 10−4 and apply a learning
rate step decay of 0.5 every 15 epochs. To balance the
different components of the loss function, we set the loss
hyperparameters as follows: λ1 = 0.1, λ2 = λ3 = λ5 = 10−3,
and λ4 = 1. Additionally, we automatically annotate six 3D
facial landmarks for each scene, which are then utilized for
the landmark consistency loss.

The weights of the reference SDF network (Eq. 3) are
initialized using the geometric initialization method described
in [69]. As for the deformation and rendering networks, their
weights are initialized as multivariate Gaussians with zero
mean and variance 10−4. Furthermore, the latent vectors zsdf
and zr are initialized as zero vectors.

We adopt a progressive masking strategy for the positional
encoding (PE) of the input to the reference SDF [70]–[72]
to minimize artifacts on the reference shape and improve
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Fig. 6. Ablation study: 3D reconstruction for two subjects from the H3DS
dataset. (a) H3D-Net [32]; (b) is H3D-Net + progressive masking; (c) H3D-
Net + Deformation Field + Reference SDF; (d) SIRA++ (Ours); (e) Ground
Truth. See text for details.

training stability. This technique involves initially masking the
higher frequency bands, effectively acting as a dynamic low-
pass filter. By allowing the model to focus on reaching robust
coarse solutions first before incorporating high-frequency con-
tent, we achieve better convergence behavior. To implement
this approach, we introduce a parameter ζ ∈ [0, L] that is
proportional to the progress of the training, where L represents
the total number of frequencies used in the PE. The Fourier
embedding of frequency k is then multiplied by a scalar wk(ζ),
defined as:

wk(ζ) =


0 ζ ≤ k

(1− cos (ζ − k)π)/2 0 ≤ ζ − k ≤ 1

1 ζ − k ≥ 1

. (15)

We start with masking all frequencies in the PE and
gradually unmask them between epochs 5 and 10 by linearly
increasing the parameter ζ from 0 to L.

Reconstructing geometry from images:
At test time, the 3D reconstruction of a scene is performed

over 2000 epochs using the Adam optimizer with an initial
learning rate of 10−4. We apply a learning rate step decay of
0.5 at epochs 1000 and 1500 to adaptively adjust the learning
rate during the optimization process.

For the mask loss LMask, we schedule the parameter λ8

following the approach in [23]. We use a two-step scheduling
strategy, where the weights of the deformation and rendering
networks are unfrozen at epoch 100, enabling more focused
fine-tuning during the latter stage of the optimization.

During optimization, we drop 12% of the background rays
every 250 epochs during the initial 1000 epochs. For caching,
we implement a voxel grid with a size of 643. We set ϵ
to 0.1 and we randomly sample points along the ray with
a probability of p = 0.2 to ensure exploration and avoid
deadlocks. The ray sampling is implemented using Nc = 75
and Nf = 25 steps.

TABLE II
ABLATION STUDY IN THE ONE-SHOT (1 VIEW) AND 4 VIEWS SETUP. THE
FACE AND FULL-HEAD MEAN DISTANCES ARE THE AVERAGES OVER THE

23 SUBJECTS IN THE H3DS DATASET IN MM. THE CONFIGURATIONS A, B,
C, AND D ARE THE SAME AS THOSE DESCRIBED IN FIGURE 6

(a) (b) (c) (d)

Face mean distance (1 view) 1.97 2.17 1.86 1.46
Full-head mean distance (1 view) 15.40 14.00 13.40 14.16

Face mean distance (4 views) 1.49 1.54 1.38 1.29
Full-head mean distance (4 views) 11.38 10.61 9.00 10.51

TABLE III
CAMERA NOISE COMPARISON. EVALUATION ON H3DS DATASET WITH 3

INPUT VIEWS.

Noise Noise face head
Error (σ) (mm) ↓ (mm) ↓

H3D-Net [32]
✗ - 1.44 11.6

ours 1.30 10.59

H3D-Net [32]
✓ 0.002 1.51 12.35

ours 1.30 10.62

H3D-Net [32]
✓ 0.01 1.60 12.36

ours 1.37 10.74

H3D-Net [32]
✓ 0.02 1.71 12.96

ours 1.48 10.83

H3D-Net [32]
✓ 0.04 1.87 13.36

ours 1.71 11.84

VI. EXPERIMENTS

A. Datasets
Prior training. To train the geometry prior, we utilize an inter-
nal dataset comprising 3D head scans from 10,000 individuals.
This dataset is intentionally designed to be well-balanced in
terms of gender representation and diverse in terms of age and
ethnicity. Before training, the raw data undergoes an automatic
processing step to remove internal mesh faces and non-human
parts, such as background walls. To ensure consistency and
alignment across the dataset, all the scenes are registered by
using a non-rigid Iterative Closest Point (ICP) approach to
align each head scan with a template 3D model.
H3DS. There exist several 3D face datasets [29], [30], [73]–
[76] that can be used for various tasks, however, large-scale
datasets containing high-quality 3D data of full head scans,
including hair and shoulders, paired with casual posed RGB
images are currently scarce. To address this limitation, we have
significantly expanded the H3Ds dataset [32] by tripling the
number of scenes, resulting in a total of 60 subjects. Each
subject in the dataset is represented by approximately 100
RGB photos with a resolution of 512x512 pixels, capturing
a full 360-degree view around the head. These RGB images
are accompanied by foreground masks and camera parameters.
Moreover, to enable accurate and reliable ground truth evalu-
ation, the dataset includes high-quality 3D textured scans for
each subject. These 3D scans are composed of approximately
150,000 vertices and 400,000 faces, complemented by a tex-
ture map with a resolution of 2048x2048 pixels (see fig. 5).
This dataset can be used either for optimization-based methods
or for validation purposes.
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TABLE IV
3D RECONSTRUCTION COMPARISON. AVERAGE SURFACE ERROR (IN MM) COMPUTED OVER ALL SUBJECTS IN 3DFAW AND H3DS DATASETS. WE

PLACE ”-” FOR NOT APPLICABLE CONFIGURATIONS AND ”∗” FOR EXPERIMENTS THAT RAISED OUT OF MEMORY ERROR.

3DFAW H3DS 2.0

1 view 3 view 1 views 3 views 4 views 6 views 8 views 16 views 32 views

face face face head face head face head face head face head face head face head
MVFNet [1] - 1.56 - - 1.73 - - - - - - - - - - -
DFNRMVS [3] - 1.69 - - 1.83 - - - - - - - - - - -
DECA [28] 1.71 - 1.99 - - - - - - - - - - - - -
MICA [27] 1.83 - 2.08 - - - - - - - - - - - - -
FaceVerse [30] 1.88 - 2.57 - - - - - - - - - - - - -
FaceScape [29] 1.61 - 1.78 - - - - - - - - - - - - -
HRN [40] 1.60 - 1.73 - - - - - - - - - - - - -
PIFU [19] 2.19 1.99 1.98 12.6 1.70 11.3 1.85 11.8 2.03 10.9 ∗ ∗ ∗ ∗ ∗ ∗
JIFF [60] 1.48 1.47 1.85 11.5 1.80 11.7 1.79 11.2 1.79 10.9 ∗ ∗ ∗ ∗ ∗ ∗
IDR [23] - 3.92 - - 3.51 28.8 3.33 14.3 3.12 16.4 2.97 12.6 2.88 12.4 2.04 10.6
NeuS2 [25] - - - - - - 3.96 8.29 2.18 6.60 2.70 5.79 2.11 4.55 1.85 4.14
H3D-Net [32] 1.70 1.37 - - 1.44 11.6 1.41 8.32 1.21 5.75 1.35 7.88 1.17 6.91 1.04 5.67
SIRA++ (Ours) 1.35 1.32 1.57 10.79 1.18 8.63 1.23 5.31 1.04 4.81 1.18 4.63 1.07 4.26 1.02 4.12

The data acquisition process for each scene in the dataset
involves several steps. Initially, the camera of an iPad Pro is
calibrated using an attached structured light sensor, specifically
the Occipital Structure Sensor Pro. This calibration process
allows us to obtain paired RGB images and camera parameters,
along with a low-resolution mesh scan. Simultaneously, a high-
end Artec Eva scanner is utilized to capture high-quality 3D
scans. Subsequently, we align the low and high-resolution
meshes, along with the paired cameras, by employing six man-
ually annotated 3D landmarks and utilizing the iterative closest
point (ICP) refinement technique. Furthermore, for each image
within the dataset, we manually annotate a foreground mask,
providing additional information for foreground-background
separation.
3DFAW. [76] This dataset provides videos recorded as well as
mid-resolution 3D ground truth of the facial region. We select
5 male and 5 female scenes and use them to evaluate only the
facial region.

B. Ablation Study

For the ablation study, we focus on a subset of 23 scenes,
randomly chosen, from the H3DS dataset.

Architecture analysis. SIRA++ architecture (see sec. III)
introduces two significant differences compared to H3D-
Net [32]: it represents the geometry as a deformed reference
SDF and incorporates pretraining for rendering human head
appearances. We have found both of these strategies to be
crucial for achieving high-quality results, especially when the
number of views decreases. To thoroughly investigate their
impact, we conduct the ablation study on the H3DS dataset
for both the one-shot and three-shot scenarios. The qualitative
results are presented in Figure 6.

We utilize H3D-Net [32] as our baseline. As evident from
Fig. 6, this architecture underfits the scene when only the latent
vector is optimized (a), and in (b) it becomes unstable when its
unique geometry decoder is fine-tuned following the progres-
sive masking of Eq. 15. To address these issues, we introduce
a significant enhancement by splitting the geometry into a

deformation field and a reference SDF (c). This modification
leads to more plausible and stable solutions. Furthermore,
SIRA++ (d) leverages joint modeling of the distribution of
3D shapes and appearances with the SA-SM, enabling better
disambiguation of geometric and visual information. Conse-
quently, the 3D models generated by SIRA++ highly resemble
the input images in (e). The quantitative results of this study,
over the 23 scenes are reported in Table II.

Robustness to camera noise. In real-world scenarios, a certain
level of inaccuracy in camera poses is inevitable, leading
to multi-view inconsistencies. To evaluate the robustness of
SIRA++ in such situations, we conducted an ablation study by
introducing varying levels of noise into the camera poses. We
applied different levels of Gaussian noise, where the standard
deviation σ controlled the amount of noise injected into the
rotation matrix and position of the camera. Remarkably, our
method demonstrates strong resilience against the injected
noise, and consistently betten than [32]. The results of this
study are presented in Table III.

C. Quantitative results

We conducted a comprehensive comparison of our method
with several 3DMM-based reconstruction works, including
MVFNet [3], DFNRMVS [1], DECA [28], MICA [27],
FaceScape [29], FaceVerse [30] and HRN [40]. Additionally,
we compared our approach to the model-free methods IDR
[23], NeuS2 [25], PIFU [19], JIFF [60] and H3D-Net [32]. For
the quantitative evaluation, we used the unidirectional Chamfer
distance, measuring the surface error from the ground truth to
the predictions. The results of this comparison are summarized
in Table IV.

Both model-free methods (H3D-Net and SIRA++) outper-
form the 3DMM-based methods for all the evaluated view
configurations. Notably, the enhancement due to the prior in
SIRA++ becomes more significant as the number of views
decreases. However, the prior does not hinder the model
from also becoming more accurate when more views are
available, which is a limitation in 3DMM-based approaches.
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Fig. 7. Qualitative results on two subjects of the H3DS dataset, for NeuS2 [25], JIFF [60], H3D-Net [32] and SIRA++, with an increasing number of
input views.

Fig. 8. Qualitative results on the 3DFAW dataset for a single input image. Each 3D reconstructed face is accompanied by a heatmap, where reddish
areas indicate larger errors in mm.
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Fig. 9. Qualitative results on the 3DFAW dataset for three input images. Each 3D reconstructed face is accompanied by a heatmap, where reddish areas
indicate larger errors in mm.

TABLE V
USER STUDY: WE COLLECT 375 RESPONSES FROM 25 PARTICIPANTS

TO MEASURE VISUAL FIDELITY OF THE RECONSTRUCTIONS.

NeuS2 JIFF H3D-Net SIRA++ (ours)

VF↑ 1.0 2.21 3.29 3.5

In the one-shot regime, SIRA++ stands out over 3DMM-based
approaches and H3D-Net, all of which yield similar results.
Both single feed-forward PIFU and JIFF methods generate
convincing and robust results, although reconstructions are
smooth and they are not able to capture high-frequency
details, especially in the face region. SIRA++ consistently
outperforms IDR, NeuS2 and H3D-Net for all configurations,
demonstrating its improved ability to generalize under data
scarcity. When more views become available and the task is
more constrained, SIRA++ and H3D-Net converge towards
comparable performance, as the prior knowledge becomes
less critical for obtaining plausible results. These findings are
further supported by the qualitative results obtained.

D. Qualitative results

Figure 7 illustrates the qualitative results of our approach,
SIRA++, and state-of-the-art approaches NeuS2 [25], JIFF
[60] and H3D-Net [32], for two subjects from the H3DS
dataset under an increasing number of input images. Notably,
our method, SIRA++, demonstrates superior performance in
surface reconstruction, yielding surfaces with reduced errors
and a more realistic appearance, particularly within the facial
region. Even with a smaller number of input views, our
approach excels at obtaining accurate and visually appealing
results. To quantitatively asess these results, we perform a user
study, with 25 human participants, to evaluate visual fidelity
(see Table V). We present a photo of a subject and renders
of reconstruction for each method. We ask the participants to
rank them based on visual fidelity (how well the reconstruction

captures the details of the person shown on the image). We
assign a numeric value between 1 and 4 for each response
based on the order. Results show that SIRA++ reconstructions
are consistently better perceived as digital representation of
full-heads.

Fig. 8 showcases results for single input images obtained
from the 3DFAW dataset [76]. Our method, SIRA++, is
compared against the one-shot methods DECA, MICA, Face-
Verse, FaceScape, HRN, PIFU, JIFF, and H3D-Net. Next to
each 3D reconstruction, we display a heatmap representing
the reconstruction error. Note that SIRA++ outperforms the
3DMM-based methods, DECA, MICA, FaceVerse, FaceScape
and HRN, and model-free methods, PIFU, JIFF and H3D-
Net significantly. Specifically, it excels in critical regions like
the nose and mouth, which are pivotal in defining the unique
anatomical features of each individual.

Similarly, Fig. 9 provides an analysis for the case of three in-
put images. Here, we compare SIRA++ against MVF-Net [1],
DFNRMVS [3], PIFU, JIFF and H3D-Net. Again, the methods
based on coordinate-based neural representation, H3D-Net,
and especially our SIRA++, outperform those relying on 3D
Morphable Models (MVF-Net and DFRMVS) and single feed-
forward models (PIFU and JIFF).

This is further highlighted in our last experiment, summa-
rized in Fig. 10, where we specifically focus on the most
challenging scenario of utilizing just one single and in-the-wild
input image, randomly taken from the celebA-HQ dataset [77].
In this case SIRA++ also consistently outperforms single
feed-forward methods, PIFU and JIFF as well as the 3DMM
methods, DECA, MICA FaceVerse, FaceScape and HRN.
DECA and MICA struggle to capture fine anatomical details,
often leading to similar-looking faces across different scenes.
On the other hand, FaceVerse and FaceScape produce biased
outputs toward Asian characteristics, as the training data is
composed of Asian subjects. Additionally, these approaches
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Fig. 10. Qualitative results on the CelebA-HQ dataset for a single input image.

are limited to reconstructing only the facial region and fail
to recover the hair and shoulders, which significantly impact
perception. In contrast, our method excels at capturing not
only the facial features but also includes the hair, upper
body clothing, and other high-frequency anatomical details,
especially in the cheeks and mouth regions. This ability results
in 3D shapes that retain the identity of the person, showcasing
the unique characteristics of the individual.

VII. LIMITATIONS AND FUTURE WORK

In our experiments, we show that SIRA++ demonstrates
significant advancements in quick personalization of pretrained
geometry and appearance priors from a few headshot images.
However, we believe that there are still several limitations and
opportunities for future work. Firstly, our rendering networks
are based on a DeepSDF decoder, and future work could
focus on combining them with Gaussian Splats for fast, high-
quality rendering. Although our approach achieves state-of-
the-art reconstruction accuracy within 200 seconds, this may
still be prohibitive for real-time applications or scenarios
requiring fast processing of multiple scenes. Future work
could focus on optimizing the efficiency of the algorithm.
Another limitation is the sensitivity of our method to the
quality of the input images. Our approach is sensitive to the
resolution, angles, occlusion, and information present in the

input images. Variations in these factors can significantly affect
the reconstruction quality.

VIII. CONCLUSIONS

In this paper, we have introduced SIRA++, a method for
high-fidelity full 3D head reconstruction in few-shot and in-
the-wild scenarios. To address the inherent ambiguity of the
problem, we proposed a novel statistical model based on
neural fields, which encoded shape and appearance into low-
dimensional latent spaces. The thorough evaluation demon-
strated that our approach achieved state-of-the-art results in
full head geometry reconstruction. Moreover, through a de-
tailed ablation study, we showcased the robustness of our
method to camera pose misalignment. We also presented a
set of improvements that led to an impressive 80% reduction
in computation time compared to previous approaches, H3D-
Net [32] and SIRA [33].
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