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Figure 1: Qualitative results for two in-the-wild subjects reconstructed using GLVD .

Abstract

Existing 3D face modeling methods usually depend on 3D Morphable Mod-
els, which inherently constrain the representation capacity to fixed shape priors.
Optimization-based approaches offer high-quality reconstructions but tend to be
computationally expensive. In this work, we introduce GLVD, a hybrid method for
3D face reconstruction from few-shot images that extends Learned Vertex Descent
(LVD) [11] by integrating per-vertex neural field optimization with global structural
guidance from dynamically predicted 3D keypoints. By incorporating relative spa-
tial encoding, GLVD iteratively refines mesh vertices without requiring dense 3D
supervision. This enables expressive and adaptable geometry reconstruction while
maintaining computational efficiency. GLVD achieves state-of-the-art performance
in single-view settings and remains highly competitive in multi-view scenarios, all
while substantially reducing inference time.

1 Introduction

High-fidelity 3D face modeling from images is a long-standing challenge in the computer vision
community, with broad impact across applications such as Virtual Reality, Augmented Reality,
healthcare, entertainment, and security. Reconstructing an accurate and coherent digital human
representation from a few input images is a highly ill-posed task -particularly in uncontrolled
environments— often requiring geometry-aware methods guided by strong prior assumptions. Adding
to this challenge is the scarcity of abundant, high-quality 3D training data captured under such
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unconstrained conditions, which limits the generalization ability of existing models in diverse real-
world scenarios.

Statistical priors based on parametric 3D Morphable Models [2, 16, 42, 52, 55, 56, 63, 64, 65, 70,
17, 82, 81, 67, 31] have become the standard approach for few-shot 3D face reconstruction. By
encoding facial geometry using a low-dimensional set of parameters, 3DMMs provide a robust
and efficient framework, particularly effective in scenarios with limited or single-view image input.
However, their effectiveness is hindered by two key limitations: a bias toward the mean shape [60],
and the inherently constrained expressiveness of parametric models. These models typically operate
within fixed low-dimensional subspaces, making it difficult to capture fine-grained details or adapt to
out-of-distribution variations.

Model-free representations using voxels [27], meshes, point clouds, or Gaussian splatting [29] offer
greater flexibility and high reconstruction accuracy, but they face scalability and resolution trade-offs
due to memory and topology constraints. Neural fields address these challenges by encoding geometry
and appearance as continuous functions via neural networks. These methods can reconstruct detailed
surfaces from images without requiring 3D supervision, but they typically depend on multi-view
inputs and suffer from high inference costs [39, 4]. Recent works [43, 68, 6] have significant progress
in reducing computational overhead. However, converting such representations into well-structured,
topologically consistent meshes suitable for animation or rendering often necessitates additional
post-processing, commonly involving template fitting.

Optimization-based approaches produce accurate and detailed results through iterative refinement [39,
68, 6, 53, 8, 9], while feed-forward methods [58, 59, 24, 22] offer faster inference at the cost of
robustness and accuracy, especially under out-of-distribution conditions [38]. More recently, Learned
Vertex Descent (LVD) [11] introduced a hybrid strategy that uses pixel-aligned image features to
guide iterative template fitting. Despite its effectiveness, LVD relies on large-scale training data with
posed images and corresponding 3D geometry, and it lacks explicit global structure—predicting
vertex trajectories independently and depending on the image encoder for implicit coherence.

To overcome these limitations, we propose leveraging a 3D face landmark estimator derived from
a 2D image-based predictor to guide 3D shape refinement. We introduce GLVD , learning-based
optimization approach that fuses local and global cues by combining per-vertex neural fields with
dynamically predicted 3D keypoints. Each neural field predicts 3D displacements for its associated
vertex based on local features sampled at its current position, while the keypoint ensemble provides
global structural guidance that informs and regularizes the optimization process. Central to our
method is a relative encoding scheme, where each vertex is transformed based on the current keypoint
estimates, allowing the network to learn geometry-aware updates that are conditioned on the evolving
global structure.

The combination of local neural fields and global keypoint-based guidance in GLVD enables more
precise control and adaptive refinement of 3D facial geometry as shown in Figure 1. Leveraging
this fusion, we conduct a comprehensive evaluation on both single-view and multi-view 3D face
reconstruction benchmarks. Our approach achieves state-of-the-art performance in single-image
reconstruction and remains competitive with optimization-based methods in multi-view scenarios,
demonstrating its robustness, accuracy, and broad applicability.

2 Related work

3D Morphable Models (3DMM). The use of 3D Morphable Models (3DMMs) has become the
standard paradigm for reconstructing 3D facial geometry from images, particularly in single-view or
few-shot scenarios. These statistical models [47, 33, 3] are widely adopted and mainly focus on the
facial region. In single-image settings, several methods have demonstrated effective reconstruction
performance [63, 17, 82, 67, 81, 31].

Recent advancements in single-image 3D face reconstruction have explored both parametric and
non-parametric strategies to improve accuracy, robustness, and detail preservation. 3DDFAv2 [21]
proposes a regression-based approach combining a lightweight architecture with meta-joint opti-
mization to achieve real-time performance while maintaining alignment accuracy. Building upon
this, 3DDFAv3 [69] introduces Part Re-projection Distance Loss, which leverages dense facial part
segmentation as a strong geometric prior for guiding 3D reconstruction, especially under extreme
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Figure 2: Overview of GLVD . Given one or more input images, each paired with a head mask and
calibrated camera parameters, the method reconstructs a 3D face mesh through two branches. (1)
The 3D Keypoint Branch predicts a set of facial keypoints by extracting localized image features
and estimating their 3D displacements iteratively. (2) The 3D Vertex Branch refines the full-face
geometry by leveraging these keypoints to encode relative spatial information for each surface vertex.
This branch extracts pixel-aligned features and predicts vertex-wise displacements in an iterative
optimization process.

expressions where landmarks are unreliable. SADRNet [57] introduces a self-aligned dual-regression
framework that disentangles pose-dependent and pose-independent features and fuses them through
an occlusion-aware alignment strategy. HRN [31] proposes a hierarchical representation network that
disentangles geometric components and incorporates high-frequency priors, enabling the reconstruc-
tion of fine facial details, such as wrinkles and skin texture, from in-the-wild images.

Neural Fields for Face Reconstruction. Neural fields have emerged as a leading approach for 3D
reconstruction, offering continuous and high-fidelity representations of geometry and appearance.
They have been successfully applied to full-head and facial modeling tasks using techniques such
as volume rendering and surface priors [41, 45, 46, 53, 8, 9, 6]. Hybrid models combine parametric
approaches such as 3DMMs with neural implicit functions to increase control and expressiveness. For
instance, IMFace [75] and IMFace++ [76] introduce implicit displacement fields to refine a 3DMM
geometry, and NeuFace [77] proposed an approximated BRDF integration and a low-rank prior for
human face rendering. In [7], authors combine geometry-aware features with image features that
output a signed distance field. However, these approaches tends to collapse and generate artifacts.

When several input images are available, a line of research [20, 79, 80, 5, 83, 19] aims to obtain
animatable full-head avatars from videos. Building on the recent success of Gaussian Splatting [29],
several works [36, 15, 50, 62] have integrated this representation to improve rendering efficiency and
visual fidelity. Combining them with 3DMMs has been explored in recent works, with methods such
as HeadGAP [78] and GPHM [72] that learns parametric head models using Gaussian-splatting-based
models. While effective, these methods often rely on dense multi-view input. In contrast, model-free
feed-forward approaches use pixel-aligned features [58] for faster inference from sparse views.

Model-free methods leveraging pixel-aligned features have gained popularity for fast 3D reconstruc-
tion, as they avoid the need for test-time optimization [58, 59, 24, 1, 61, 13, 22]. PIFu [58] introduced
pixel-aligned implicit functions, using 2D image features to predict 3D occupancy from single or
multiple views, and Phorhum [1] extended this by employing signed distance fields for surface mod-
eling. JIFF [7] proposed combining features from a face morphable model and pixel-aligned features.
In contrast, using volumetric rendering, KeypointNeRF aggregates pixel-aligned features with a
relative spatial encoder. More recently, LVD [11] emerged as a learning-based optimization approach
that laverages pixel-aligned features to guide an iterative-based template fitting. While it acquires a
good trade-off between computation requirements and accuracy for human mesh recovery, it remains
unexplored for 3D face modeling. However, single feed-forward methods based on pixel-aligned
features still lag behind optimization-based approaches in terms of reconstruction quality [9].

3



Figure 3: Qualitative results on two subjects of the H3DS dataset, for LVD [11], SIRA++[9],
JIFF [7], and GLVD , with an increasing number of input views.

Encoding Representations for 3D Reconstruction. Previous approaches have explored various
spatial encoding strategies to enhance learning. PVA [51] and PortraitNeRF [18] utilize face-
centric coordinate systems, while ARCH [26] and ARCH++ [25] adopt canonical body coordinates.
KeypointNeRF [40] proposes to encode relative spatial 3D information in the form of depth via
sparse 3D keypoints. In [14] the authors introduced a three-step pipeline of landmark selection,
low-dimensional embedding via MDS, and distance-based triangulation to embed points. GLVD
follows a similar idea by selecting identity-specific facial keypoints and encoding mesh vertices
through their Euclidean distances to these keypoints within the learned space. In this work, we
conduct a thorough investigation of spatial encoding and find that a simple yet effective encoding
based on relative distances w.r.t 3D keypoints [12] yields effective results in combination with neural
fields guided by pixel-aligned features. We adopt a canonical aligned space to stabilize training. In
addition to achieving state-of-the-art results on 3D face reconstruction from as few as single input
image, our approach can also be used beyond face modeling.

Mesh Recovery for body. Several works [35, 73, 37, 34, 74] focus on full-body mesh recovery
and remain unexplored in the context of face modeling. These methods often operate in single-
image settings [35, 73, 37, 34] or on video sequences [32]. METRO [35] and DeFormer [73]
use transformers to jointly process mesh joints and vertices, differing in attention aggregation but
both relying on global self-attention. METRO further conditions on a global image embedding,
discarding pixel-aligned spatial detail. In contrast, 3D Virtual Markers [37] predicts latent 3D markers
and reconstructs the mesh as a linear combination, while One-Stage Mesh Recovery [34] directly
regresses SMPL parameters via a transformer. Both are constrained by the limited expressiveness
of low-dimensional latent spaces. PyMAF-X [74] introduces an iterative refinement approach that
samples pixel-aligned features from prior vertex predictions, but does not leverage explicit landmark
or keypoint constraints for structural supervision. GART [32] leverages skeletal priors and temporal
video input for avatar reconstruction, whereas GLVD is purely image-driven and effective in both
monocular and few-shot settings. Finally, [54] replaces PCA-based 3D face models with convolutional
mesh autoencoders to learn shape priors, but focuses on latent mesh encoding rather than direct facial
geometry estimation from RGB images as in GLVD

3 Method

In this section, we present our method for 3D face reconstruction using learned keypoint guidance. We
first review the Learned Vertex Descent (LVD) framework [11], then introduce our key architectural
innovations. The section concludes with details on training and inference. An overview is shown in
Figure 2, with implementation details in the supplementary material.
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Figure 4: Qualitative results on the 3DFAW dataset for a single input image. Each 3D recon-
structed face is accompanied by a heatmap, where reddish areas indicate larger errors in mm.

3.1 Background: Learned Vertex Descent

Learned Vertex Descent (LVD) [11] is an optimization-based method for 3D human shape reconstruc-
tion from single-view images or scans. While it has been applied to full-body and hand reconstruction,
we explore its potential for 3D face modeling. The model learns a transformation g(·) which takes
the current 3D vertex position at iteration t and the associated 2D image features fi for vertex i as
input, and outputs a displacement vector ∆vi:

g : (vt
i , fi) 7→ ∆vi. (1)

This vector represents the correction needed to align the vertex with its ground truth position v̂i. The
updated vertex position is then given by vt+1

i = vt
i + ∆vi. The reconstruction process involves

iteratively applying this update to refine the 3D shape.

3.2 Problem Definition

Our goal is to recover a 3D face surface S from a small set of input images {In}Nn=1, where each
image In is paired with a head mask Mn and calibrated camera parameters Tn. The surface S is
represented by a fixed topology of 7,225 vertices and 14,342 faces.

We aim to incorporate global 3D-aware guidance into the per-vertex optimization by leveraging a
relative encoding based on the Euclidean distances between vertices and keypoints. As a result,
we propose a two-stage architecture to address limited multi-view input images: (1) a 3D keypoint
estimation module that defines spatial keypoints on the facial surface by estimating displacements,
and (2) a vertex prediction module that encodes vertices relative to these keypoints to estimate vertex
updates. Our formulation does not rely on a predefined parametric model or fixed joint sets, making
it adaptable to arbitrary topologies. A sparse set of surface points is conveniently selected to act as
ground-truth keypoints.

3.3 Learning-Based Keypoint Estimation

Our goal is to establish a reference space to guide vertex optimization towards the target surface.
To achieve this, we estimate a fixed set of K 3D keypoints {kt

j}Kj=1, where kt
j ∈ R3 represents the

j-th keypoint on the target surface, at iteration t. These keypoints are used for encoding the relative
positions of query vertices vi.

The 3D keypoint branch consists of two components: one responsible for extracting image features
Fk, and another focused on learning 3D keypoint displacements ∆ki. To compute Fk, we first
generate facial keypoint heatmaps using off-the-shelf HRNet [66], which are then concatenated with
vertex image features Fv obtained from the first stack of the Hourglass network [44]. This combined
feature map is subsequently refined using a single-stack Hourglass module fs(·):
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Figure 5: Qualitative results on the 3DFAW dataset for three input images. Each 3D reconstructed
face is accompanied by a heatmap, where reddish areas indicate larger errors in mm.

fk : (I,M,Fv) 7→ Fk. (2)

The keypoints employed to guide the vertex branch do not necessarily coincide with the facial
landmarks defined by HRNet. We adopt a strategy of predicting vertex displacements from local
features, as this approach has been demonstrated to yield more accurate geometric detail [58, 59, 10,
11]. To estimate the 3D keypoints, we implement gk(·) (Eq. 1) with a 3-layer MLP that takes as input
the current estimate of keypoint kt

i and its local F-dimensional local features Fk,i extracted at the
projection of kt

i on the image plane, and predicts the displacement ∆kt
i. In the first step, we begin by

uniformly sampling k0
i within a volume of size 2 centered at the origin.

3.4 Vertex Displacement Prediction

The vertex branch consists of two modules: a local feature extractor fv : (I,M) 7→ Fv that computes
image-aligned features for each projected vertex, and a regressor gv(·) that predicts the final vertex
displacements ∆vi, which is also implemented as a 3-layer MLP.

We extract local image features Fv and Fk for each image I, and following Sec. 3.3, we estimate
a set of predefined 3D keypoints at each iteration t. Given a query vertex vi ∈ R3, we compute
a keypoint-relative encoding matrix P ∈ RK×3, where each row represents a displacement vector
Pt = kt − vt

i . As shown in our ablations (Sec. 4.2), this encoding outperforms alternatives such as
euclidean distances, attention or concatenation.

3.5 Displacement Learning and Optimization

The network is trained to learn the parameters of fv(·), fk(·), gk(·), and gv(·). We use a dataset of N
training scenes, each with a ground truth mesh with known topology, posed RGB images, and head
masks. We sample query points for each scene using a hybrid strategy that combines uniform sampling
with points near the mesh surface. Both model components are trained to predict displacements at
each iteration t. The iteration index is not explicitly encoded during training, as the model is exposed
to a stochastic distribution of vertex states, making it inherently timestep-independent. At inference
time, iteration t corresponds to updating each vertex by adding the displacement predicted at the
previous step (Sec. 3.1). We pre-train the feature encoder on the 3D reconstruction task by augmenting
it with a signed distance function (SDF) prediction head. This improves convergence behavior and
leads to higher reconstruction accuracy. Further details are provided in the supplementary material.

Keypoint Displacement Learning. We select a consistent set of 3D keypoints to guide the surface
displacement learning. For each mesh, we choose randomly a fixed subset of vertices to serve as
target keypoints {kt

j}. While their selection can be arbitrary, it must remain consistent across training
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Table 1: 3D face reconstruction comparison. Average surface error (in mm) computed over all
subjects in 3DFAW and H3DS datasets. We place "-" for not applicable configurations. Optimitzation-
based have been included for reference.

3DFAW H3DS 2.0

1 view 3 view 1 views 3 views 4 views 6 views

MVFNet [70] - 1.56 - 1.73 - -
DFNRMVS [2] - 1.69 - 1.83 - -
DECA [17] 1.71 - 1.99 - - -
MICA [82] 1.83 - 2.08 - - -
FaceVerse [67] 1.88 - 2.57 - - -
FaceScape [81] 1.61 - 1.78 - - -
HRN [31] 1.60 - 1.73 - - -
VHAP [49] 2.05 - 2.15 - - -
3DDFA-V3 [69] 1.45 - 1.65 - - -
RAFaRe [22] 1.68 - 2.54 - - -
PIFU [58] 2.19 1.99 1.98 1.70 1.85 2.03
JIFF [7] 1.48 1.47 1.85 1.80 1.79 1.79
LVD [11] 1.58 1.26 1.39 1.45 1.39 1.37
GLVD (ours) 1.25 1.22 1.36 1.33 1.34 1.34
H3D-Net [53] 1.70 1.37 - 1.44 1.41 1.21
SIRA++ [9] 1.35 1.32 1.57 1.18 1.23 1.04

scenes and during test-time inference. Each query keypoint, together with the input image I, is passed
to the model (gk ◦ fk)(x), which predicts 3D keypoint displacements ∆kt

i.

Keypoint Displacement Learning. We select a consistent set of 3D keypoints to guide the surface
displacement learning. For each mesh, we choose the same subset of vertices to serve as target
keypoints {kt

j}. While their selection can be arbitrary, it must remain consistent across training
scenes and during test-time inference. Each query keypoint, together with the input image I, is passed
to the model (gk ◦ fk)(x), which predicts 3D keypoint displacements ∆kt

i.

Surface Displacement Learning. We train fv(·) and gv(·) separately from the 3D keypoint branch.
We encode vertices relative to the ground-truth 3D keypoints. To simulate prediction uncertainty, we
perturb the sampled keypoints with noise drawn from a zero-mean multivariate Gaussian distribution
with spherical covariance σ2. These noisy keypoints are then used for encoding. Since depth errors
in camera-aligned show higher variance, we apply noise with standard deviation 3σ along the depth
axis in the camera frame.

Given a ground-truth mesh V̂ = [v̂1, . . . , v̂N ] and its corresponding image I . We randomly sample
M 3D points X = {x1, . . . ,xM}, and compute the loss for each of the M points:

L =
1

M

M∑
i=1

1

N

N∑
j=1

[
λ1

(
1− ∆xj

i · ∆̂x
j

i

∥∆xj
i∥2 ∥∆̂x

j

i∥2

)
+ λ2

∣∣∣∥∆xj
i∥2 − ∥∆̂x

j

i∥2
∣∣∣] (3)

where xi is the i-th 3D query point, N is the number of ground-truth vertices, ∆xj
i is the predicted

displacement from xi to the j-th point, and ∆̂x
j

i is the corresponding ground truth displacement.
The symbol · denotes the dot product, and ∥ · ∥2 represents the Euclidean (L2) norm. The parameter
λ1 controls the contribution of the directional loss term, which minimizes the angular deviation
1− cos(θ) between the predicted and ground truth vectors. The parameter λ2 weights the magnitude
loss, which penalizes differences in the length of the displacement vectors. To promote locality in the
extracted image features, this term is clipped during training. This weighted combination encourages
both directional consistency and training stability. During training, we apply binary dropout to the
image features Fv to enhance robustness against unreliable predicted neural fields. Additionally,
we model the 3D keypoints used for encoding vertices in the vertex branch as stochastic variables,
introducing noise to the ground-truth keypoints only during training.
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Test time Test time
1 view ↓ 3 views ↓

MVFNet [70] − < 10ms

DFNRMVS [2] − 0.6s

3DDA-V3 [69] < 10ms −
RAFaRe [22] 19s −

HRN [23] 1s −
PIFU [58] 2.5s 3s

JIFF [7] 4s 5s

H3D-Net [53] 600s 1200s

SIRA++ [8] 90s 191s

GLVD (ours) 0.2s 0.25s

Figure 6: Quantitative comparison on H3DS dataset with one and three input views. Left.
Reconstruction error (mm) is plotted against runtime for various state-of-the-art methods under
different view configurations. Right. Inference times for single and multi-view settings.

4 Experiments

Training face dataset. We employ a proprietary dataset of 3D head scans collected from 10,000
individuals, balanced by gender and diverse in age and ethnicity. All scans are aligned to a template
3D model using non-rigid Iterative Closest Point (ICP) registration for consistency.

H3DS 2.0. [53, 9] It contains 60 high-quality 3D full-head scans, including hair and shoulders, paired
with posed RGB images. Each image includes a foreground mask and calibrated camera parameters.

3DFAW. [48] This dataset provides videos recorded as well as mid-resolution 3D ground truth of the
facial region. We select 5 male and 5 female scenes and use them to evaluate only the facial region.

CelebA-HQ. [28] This dataset comprises 30k high-quality images at 1024×1024 resolution, derived
from the original CelebA dataset. We selected a subset of 6 subjects for our qualitative evaluation.

4.1 3D Face estimation

We conducted a comprehensive comparison of our method with several 3DMM-based reconstruction
works, including MVFNet [2], DFNRMVS [70], DECA [17], MICA [82], FaceScape [81], FaceVerse
[67], HRN [31], 3DDFA-v3 [69] and VHAP [49]. Additionally, we compared our approach to the
model-free methods PIFU [58], JIFF [7], RAFaRe[22], H3D-Net [53] SIRA++ [9] and hybrid method
LVD [11]. We used the unidirectional Chamfer distance for the quantitative evaluation, measuring the
surface error from the ground truth to the predictions. The results of this comparison are summarized
in Table 1. Qualitative results for 3DFAW subjects are presented in Figure 4 for the single view and
in Figure 5 for the multiview setting. Results on H3DS are presented in Figure 3. We show in Figure
7 the estimated 3D face and the guiding keypoints.

GLVD demonstrates consistently strong performance across 3DFAW and H3DS evaluations. It
leverages the structured topology of 3DMMs while explicitly addressing the constraint of shape
representation to a predefined model space and the resulting bias toward average mean shape.
As a result, GLVD outperforms 3DMM-based approaches, particularly in the single-view setting
(Figure 4). In comparison to model-free single forward pass methods such as PIFU, JIFF and RAFaRe,
it demonstrates superior performance in surface reconstruction, yielding surfaces with reduced errors
and a more realistic shape appearance.

Optimization-based methods are considered state-of-the-art for face reconstruction, particularly in
multi-view settings where the problem becomes less ill-posed. However, their high computational
cost remains a key limitation. In contrast, GLVD achieves comparable accuracy with over two orders
of magnitude faster inference and without requiring postprocessing or template registration. Inference
times are reported in Figure 6 with 10 iterative update steps.
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4.2 Ablation

We conduct detailed ablation study on 3DFAW and H3DS 2.0 datasets to assess the impact of key
design choices and demonstrate the effectiveness of the proposed method.

Table 2: Reconstruction quality compari-
son using a single view with varying numbers
of keypoints. Chamfer distance is reported in
millimeters (mm).

3DFAW↓ H3DS↓
GLVD - 4 1.92 1.51
GLVD - 6 1.85 1.36
GLVD - 12 1.57 1.42
GLVD - 18 1.25 1.36
GLVD - 24 1.58 1.33

Table 2 reports quantitative results using various subsets of
3D keypoints to guide GLVD . While the method is agnos-
tic to landmark topology and supports flexible selection,
we evaluate the impact of using different subsets derived
from the template 3DMM. The specific landmark sets used
are detailed in the supplementary material. Notably, results
show that a small set of well-chosen keypoints provides
effective global structural guidance, though limited cover-
age can introduce noise. While increasing the number of
keypoints improves performance, gains in reconstruction
accuracy diminish beyond a certain point. We attribute this
to the fact that the keypoints are estimated. Higher-quality
landmark supervision could further enhance reconstruc-
tion fidelity. In Figure 7, we provide face reconstruction
results with the selected keypoints indicated for reference.

Keypoints encoding. In the original LVD formulation, global structure is not explicitly modeled, as
point trajectories are predicted independently, with structural coherence learned implicitly through 2D
feature volumes. This results in ambiguity, as the model must resolve all possible correspondences per
query without clear global guidance. In GLVD , we address this by introducing a landmark ensemble
that serves as a compact global prior. These keypoints act as spatial anchors that guide vertex
displacements, reducing ambiguity and promoting consistent topology. We ablate various encoding
strategies in Table 3. Replacing the per-vertex head with a global attention layer (k) introduces noise
and instability, presumably due to long context. Inspired by the concept of skinning weights, we
model vertex-to-keypoint relations via learnable attention (j), achieving performance on par with
the standard encoding (l). Concatenation (h) and distance-based encoding (i) offer no gains, while
removing absolute positions and using only relative encoding (g) leads to a performance drop.

Table 3: Comparison of reconstruction quality for different number
of keypoints. Chamfer distance in mm.

3DFAW↓ H3DS 2.0↓
(a) LVD 1.58 1.39
(b) GLVD w/o loss (Eq. 3) 1.27 1.39
(c) GLVD w/o HRNet 1.52 1.39
(d) GLVD w/o training Noise 1.31 1.42
(e) GLVD w/o binary dropout 1.27 1.38
(f) GLVD w/ canonical space 1.51 1.52

(g) GLVD w/o vertex pos. 1.55 1.67
(h) GLVD w/ concat Enc. 1.27 1.36
(i) GLVD w/ norm Enc. 1.26 1.37
(j) GLVD w/ attention Enc. 1.27 1.36
(k) GLVD w/ attention layer 1.85 1.97
(l) GLVD 1.25 1.36

Architecture analysis. The GLVD
architecture (Sec. 3) incorporates two
core design choices: it estimates key-
points progressively during optimiza-
tion and encodes vertices relative
to these dynamically predicted key-
points. Table 3 presents an ablation
of different training strategies. Us-
ing an L2 loss with clipping, follow-
ing [11] (b), results in unstable gra-
dients and weak directional supervi-
sion. Incorporating a pre-trained HR-
Net for facial landmark prediction (c)
highly improves performance in both
vertex reconstruction and keypoint
estimation. Injecting noise during
training (d) to model the encoding
as a stochastic variable improves ro-
bustness and test-time stability in the
presence of uncertainty. Applying
binary dropout to the 2D features during training (e) encourages reliance on the geometry-aware
encoding and leads to better accuracy. Finally, optimizing in canonical space (f), as done in [53, 9, 18],
introduces a bias towards the mean shape. In the single-view setting, we use camera coordinates as
the reference space, which removes the need for a calibrated camera at test time. We also investigate
directly predicting the position of a specific vertex. We augment each query point with an identity
feature derived from a Fourier embedding of the vertex’s 3D coordinates in the canonical face tem-
plate. At test time, each sampled vertex is assigned a unique target identifier, and the model predicts
displacements toward all possible targets, after which the displacement corresponding to the specified
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Figure 7: Qualitative results for one and three input images. Images are from CelebA-HQ (left),
H3DS2.0 (right top), and 3DFAW (right bottom). At the last iteration step, we show the predicted
template and the 3D keypoints in red.

identifier is selected. However we empirically found it to be more stable and to yield better results by
encoding trajectories implicitly as done in GLVD.

5 Discussion

Limitations and Future Work: While GLVD demonstrates strong performance in few-shot 3D face
reconstruction, it remain sensitive to occlusions and relies on the accuracy of keypoint predictions,
which may degrade under challenging visual conditions. The focus of our method is the reconstruction
of the face area by combining a hybrid method for fast and accurate prediction. Therefore, adding
facial expressions is an interesting future direction. Future work may explore temporal consistency
for video-based reconstruction and topology-adaptive strategies to better capture complex geometry.

Conclusions. In this paper, we have introduced GLVD , a hybrid approach for high-fidelity 3D face
reconstruction from few-shot images. Our method introduces a novel combination of per-vertex
neural fields and dynamically predicted 3D keypoints to provide both local accuracy and global
structural guidance. By encoding vertex displacements relative to a sparse set of learned keypoints,
our method refines mesh geometry iteratively without requiring parametric shape priors. The thorough
evaluation demonstrated that our method achieves state-of-the-art performance in single-view settings
and remains highly competitive in multi-view scenarios, all while substantially reducing inference
time.
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A Appendix: Guided Learned Vertex Descend

In this appendix, we provide further technical details on

- Experimental setup

- Different Keypoints configuration

- Implementation Details

- Additional qualitative results

- Failure Cases

For video results, including visual comparison to prior work, we refer to our supplementary video. This video
includes a demonstration of GLVD for different input images.

A.1 Experimental Setup

GLVD adapts its reference space based on the number of input views during training and inference. For
single-view 3D reconstruction, it operates in the camera coordinate frame, eliminating the need for camera
parameter estimation at test time. In the multi-view setting, we canonicalize the 3D reconstruction and train a
camera pose estimator on the same dataset used for training GLVD to enable prediction at inference time.

To ensure a fair comparison, PIFU, JIFF, LVD, and SIRA++ are trained using the same data used to train GLVD
. While PIFU, LVD and JIFF were initially designed for full-body reconstruction, we modified their training
to align with the data used by GLVD . To enhance robustness during training, we applied data augmentation
techniques, including adjustments to brightness, contrast, hue, and saturation, as well as image jittering, blurring,
and zooming. These augmentations are applied to the input images used for feature extraction. Additionally, we
employed scene symmetrization, doubling the number of training scenes.

A.2 Keypoints configuration

GLVD requires only RGB images as input to predict the 3D surface. Internally, it operates by estimating 3D
keypoints. Figure 8 presents visualizations of four proposed landmark subsets. The method is designed to allow
a flexible selection of landmark configurations. In our experiments, we use template vertices registered to the
training scenes. To adapt the method to other parametric models, such as FLAME or SMPL-X, joints can be
selected as keypoints.

Figure 8: Qualitative visualization of four keypoints configurations. Images are from H3DS 2.0.
At the last iteration step, we show the predicted template and the 3D keypoints in red.

A.3 Implementation Details

The function fv(·) is a stacked hourglass network [44] composed of four stacks using group normalization [71].
Feature embeddings have a spatial resolution of 64× 64, with each containing 64 channels. As a result, each
query point is represented by stacking four feature vectors of size 64× 4 = 256. We pre-train fv(·) to predict
the signed distance function (SDF) values using the same training data. We set the clipping directional factor to
0.1, being the scene normalized in the centered cube of size 2.

The function fk(·) is implemented by a combination of facial keypoint heatmap estimator HRNet [66] and a
single-stack hourglass network [44]. During training, we keep the weights of the HRNet frozen. To generate Fk,
we extract the first feature map computed with fv(·) and then concatenate it with the heatmaps predicted by
HRNet. The combination of the features and the image I and the mask M is then fed to the hourglass network.
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Figure 9: Qualitative results for one input image. Images are from 3DFAW (top), and H3DS 2.0
(bottom). At the last iteration step, we show the predicted template and the 3D keypoints in red.

Feature embeddings have a spatial resolution of 64 × 64, with each containing 64 channels. We use a 0.1
clipping factor.

Table 4: Total number of parameters.

Parameters Ratio

fv(·) 14.08 M 54.9%
gv(·) 11.57 M 45.1%
Total 25.64 M 100%

fk(·) (HRNet) 9.65 M 67.2%
fs(·) (Hourglass) 4.28 M 29.8%
gk(·) 0.43 M 2.96%
Total 14.36 M 100%

Function gv(·) produces an output tensor of dimension N =
7225 × 3. Given an input surface of size 7225 × 3, it outputs
a tensor of shape 7225 × 7225 × 3. Per-vertex displacements
(7225× 3) are extracted from the diagonal and applied to update
vertex positions.

GLVD works for different numbers of input images. When
several images are used, we adopt a mean aggregation layer
among features extracted from a multi-view feature encoder. In
particular, we follow a single view forward pass independently of
the number of input images until the second layer of the gv(·) and
gk(·), where we apply a mean operation to aggregate multiview
features.

Function gk(·) produces an output tensor of dimension K =
18× 3. Given an input surface of size 18× 3, it outputs a tensor
of shape 18× 18× 3. Per-vertex displacements (18× 3) are extracted from the diagonal and applied to update
keypoints positions. Both gv(·) and gk(·) are implemented as a 3-Layer MLP with ReLU activation and weight
normalitzation.

All networks are trained end-to-end using GPU-accelerated hardware (RTX 4090). We use a batch size of 4 and
an initial learning rate of 0.001 for 50 epochs, followed by 200 additional epochs with linear learning rate decay.
For each scene, we sample 1400 vertices as query points. It takes between 1.5 to 6 days of training depending
on the configuration. We set λ1 = λ2 = 0.5. Optimization is performed using Adam [30] with β1 = 0.9 and
β2 = 0.999. The total number of parameters is detailed in Table 4.

A.4 Aditional results

We provide qualitative results for subjects from 3DFAW and H3DS 2.0 using a single input view in Figure 9,
and for the multi-view setting in Figure 10. We also show qualitative results in-the-wild CelebA-HQ dataset in
Figure 7.

Figure 11 reports the reconstruction error on 3DFAW subjects under varying numbers of update steps and
clipping factor. At test time, the magnitude of the predicted displacement vector is clipped within the range
[0.05, 0.5]. Results indicate that the number of update steps has a limited impact on reconstruction accuracy,
which is strongly influenced by the clipping value used during training. This parameter controls the trade-off
between accuracy and computational cost. Our experiments achieve the best performance with 10 steps and a
clipping factor of 0.1.

We conducted an ablation study evaluating sequential vs parallel update strategies for the vertex and keypoints
refinement modules on the H3DS 2.0 and 3DFAW datasets (Table 5). The results demonstrate that the iterative
parallel update scheme yields consistently superior performance compared to the sequential alternative, although
the improvement is minor.
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Figure 10: Qualitative results for three input images. Images are from 3DFAW. At the last iteration
step, we show the predicted template and the 3D keypoints in red.

Table 5: Ablation of sequential versus iterative (parallel) update strategies on H3DS 2.0 and 3DFAW.
H3DS 2.0 Dataset 1 view ↓ 3 views ↓ 4 views ↓ 6 views ↓
LVD 1.55 1.49 1.44 1.42
LVD pre-trained SDF 1.39 1.45 1.39 1.37
GLVD Sequential 1.38 1.36 1.34 1.35
GLVD Iterative 1.36 1.33 1.34 1.34
3DFAW Dataset 1 view ↓ 3 views ↓ —

LVD 1.65 1.52 —
LVD pre-trained SDF 1.58 1.26 —
GLVD Sequential 1.29 1.23 —
GLVD Iterative 1.25 1.22 —

We also demonstrate that pre-training the feature encoder on a 3D reconstruction task, where it is trained to
predict signed distance functions (SDFs), leads to faster convergence and improved performance. In this setting,
(1) we pre-train the feature encoder on the 3D reconstruction task. We represent the surface S as the zero-level
set of a signed distance function f sdf : (x, I) → s, such that S = {x ∈ R3 | f sdf(x, I) = 0}. Our goal is to
estimate f sdf through a composition of a feature encoder and a decoder network. The resulting feature encoder is
then used within GLVD. To train on the SDF task, we use non-watertight scans from the same training dataset
and minimize L(i)

Surf on surface points Ns and L(i)
Eik throughout the volume Nv:

LSurf =
1

Ns

Ns∑
i=1

∣∣f sdf(xi, I)
∣∣, (4)

LEik =
1

Nv

Nv∑
i=1

(∥∥∥∇xf
sdf(xi, I)

∥∥∥
2
− 1

)2

. (5)

The loss is averaged over the batch. We compare in Table 5 the impact of pretraining. We evaluate LVD with and
without SDF-based pretraining of the feature encoder. Results show that this pretraining is crucial for achieving
strong performance in both LVD and GLVD.
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Figure 11: Reconstruction Error from a Single Input Image. Results report the mean Chamfer
Distance on the 3DFAW dataset.

A.5 Failure Cases

We present failure cases of GLVD under varying numbers of input views. Figure 12 illustrates qualitative
results in extreme scenarios, while Table 6 reports quantitative performance for different viewing angles in
the single-view setting. The best performance is observed with front-facing input images. As the viewing
angle increases, performance degrades significantly, primarily due to inaccuracies in landmark estimation under
self-occlusion conditions.

Figure 12: Reconstruction Error from a Single Input Image. Results report failure cases.

A.6 Social Impact

GLVD advances 3D face modeling with high accuracy, enabling applications in graphics, AR/VR, and biometrics.
However, it also raises concerns about privacy, surveillance, and identity misuse. High-fidelity face reconstruction
can be used without consent or for impersonation, contributing to deepfake risks. To mitigate these issues,
responsible deployment, fairness audits, and privacy safeguards are essential. While GLVD is a technical step
forward, its societal implications must be carefully considered.

Table 6: Quantitative Results for a Single Input Image at varying input angles. Chamfer Distance
is reported in millimeters (mm) on the H3DS 2.0 dataset.

1 view 0° 1 view 45° 1 view 90°

GLVD 1.31 2.07 2.11
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Figure 13: Qualitative results on the CelebA-HQ dataset for a single input image.
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